Peramalan Penerbitan Ijin Mendirikan Bangunan Dengan Single Moving Average Dan Exponential Smoothing
Abstract
Building Construction Permits are permits granted by the Regional Head to building owners to build new, change, expand, reduce or maintain buildings in accordance with administrative requirements and applicable technical requirements. Forecasting is an estimate or estimate of the occurrence of an event or event in the future. Forecasting is an important tool in efficient and effective planning. The process is to estimate what future needs include needs in terms of quantity, quality, time and location needed to fulfill the demand for goods or services. Forecasting is the initial part of a decision making process. Data for Building Construction Permits (IMB) was calculated using the Simple Moving Average and Exponential Smoothing method to determine the value of Mean Error, Mean Absolute Deviation, Mean Square Error, Standard Error, Mean Absolute Percent Error.
Downloads
References
[2] Jefrisen, Studi Tentang Pelayanan Pemberian Izin Mendirikan Bangunan Di Kantor Pelayanan Perizinan Terpadu (KP2TSP) Kabupaten Kutai Barat,2016
[3] Nurul Agus Irawan, Implementasi Aturan Ijin Mendirikan Bangunan (IMB) Di Kawasan Sekitar Bencana Lumpur Sidoarjo, 20dkk16
[4] Pada Peraturan Menteri Pekerjaan Umum Dan Perumahan Rakyat No.05/PRT/M/2016
[5] Tyas Wedhasari, Analisa Penggunaan Metode Peramalan Pada Perusahaan Retail Sistem Tradisional Market, 2015
[6] Hari Utari, dkk , Perancangan Aplikasi Peramalan Permintaan Kebutuhan Tenaga Kerja Pada Perusahaan Outsourcing Menggunakan Algoritma Simple Moving Average, 2016
[7] Kristien Margi S, Sofian Pendawa W, Analisa Dan Penerapan Metode Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu, 2015
[8] I Gusti Ngurah Rai Dharma Widura, dkk, Penentuan Target Pajak Kendaraaan Bermotor Di Provinsi Bali Menggunakan ARIMA dan Algoritma Genetik, 2018
[9] Novian Anggis Suwastika, dkk, Model Prediksi Simple Moving Average Pada Auto-Scaling Cloud Computing, 2015
[10] Riza Rahmadayanti, dkk, Perbandingan Keakuratan Metode Autoregressive Integrated Moving Average ( ARIMA ) dan Exponential Smoothing Pada Peramalan Penjualan Semen Di PT. Sinar Abadi, 2015
[11] David Widodo,Seng Hansun, Implementasi Simple Moving Average dan Exponential Moving Average dalam Menentukan Tren Harga Saham Perusahaan, 2015
[12] I Nyoman Sumerta Yasa, dkk, Peramalan Kurs Rupiah Terhadap US Dollar Menggunakan Metode Hbrid, 2017
[13] I Putu Susila Handika, dkk, Perbandingan Metode Extreme Learning Machine dan Particle Swam OptimizationExtreme Learnig Machine untuk Peramalan Jumlah Penjualan Barang, 2016
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License