Pemanfaatan Big Data Media Sosial Dalam Menganalisa Kemenangan Pilkada
Abstract
The election of the Governor and Deputy Governor of Bali will go through several stages of elections starting from the determination of the Governor and Deputy Governor of Bali to the stages of vote counting. In the election of the Governor and Deputy Governor of Bali the community can be directly involved in the voting stage which will be held on June 27, 2018 (General Commission Election or KPU, 2018). So that it raises many opinions, not only positive and neutral opinions but also negative ones. This research is expected to be able to conduct research on public opinion which contains positive, neutral and negative sentiments. In this research used tokenization preprocessing data N-gram method. N-gram is a token consisting of three words in each one token. In the stemming stages used the Nzief Adriani algorithm. For the classification process of this research used the ‘Naïve Bays Classifier (NBC) method. In testing the candidate Governor's data the highest accuracy was obtained from the classification ofKBS-Ace data on data taken from twitter with 89% accuracy, 91% precision and 94% recall and lowest accuracy when KBS-Ace data calcification process on social media Facebook.
Downloads
References
[2] Murnawan dan Ardiles Sinaga,“Pemanfaatan Analisis Sentimen Untuk Pemeringkatan Populalitas Tujuan Wisata,” Jurnal Penelitian Pos dan Informatika, vol.7, no.2, 109-120, Desember 2017
[3] Ahmad Fathan, H dan Azhari SN, “Analisis Sentimen Dan Klasifikasi Katagori Terhadap Tokoh Publik Pada Twitter,” Seminar Nasional Informatika, ISSN: 1979-2328, Agustus 2014
[4] Bridge, C. 2011. Unstructured Data and the 80 Percent Rule.[Online].Tersediadi:http://www.clarabridge.com/default.aspx?tabid=137&ModuleID=635&ArticleID =551 [diunduh : 6 Mei 2018].
[5] Ida Bagus Gede Widnyana Putra, Made Sudarma dan I Nyoman Satya Kumara “Klasifikasi Text Bahasa Bali Dengan Informatin Gain dan Naïve Bayes Classifier,” Majalah Ilmiah Teknologi Elektro 2016
[6] Mohammad Arif and Gaurav Bathla,”Lexcion Based Semtiment Analysis on Facebook Page,” Journal of Engineering and Applied Sciences, vol.12, no.2, 2017
[7] R. Sudrajat, Rudi Rosadi and Harits Muhammad,” Implementation of Data Mining in Analyzing Social Media Users Personality with Naïve Bayes Classifier: A Case Study of Instagram Social Media,” International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
[8] Vishal A. Kharde dan S.S. Sona “Analisis Sentimen dari Data Twitter: Survei Teknik,” International Journal of Computer Applications, (0975 – 8887), Volume 139 – No.11, April 2016
[9] Konstantinas, Paulius dan Gintautas “SVM and Naıve Bayes Classification Ensemble Method for Sentiment Analysis” Baltic J. Modern Computing, vol.5. no.4, pp. 398–409, 2017
[10] Syahmia Gusriani, Kartina Diah K.W DAN Muhammad I.Z, “Analisis Sentimen Terhadap Toko Online di Sosial Media Menggunakan Metode Klasifikasi Naïve Bayes (Studi Kasus: Facebook Page BerryBenka) “ Conference Paper September 2016
[11] Agnes Rossi.T, Rizal S. dan M. Ali Fauzi,” Analisis Sentimen Tentang Opini Pilkada Dki 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naïve Bayes dan Pembobotan Emoji” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 1, No. 12, Desember 2017
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License