Perancangan Deteksi Cacat Pada Layer Solar Cell Menggunakan Sensor Tegangan Static Permukaan Berbasis Bluetooth

  • rocky Alfanz Universitas Sultan Ageng Tirtayasa
  • Imamul Muttaqin
  • Juan Carol

Abstract

This study highlights use of solar panels as a promising source of renewable energy due to the abundant availability of solar energy. However, solar cells often encounter various issues and damage, such as cracks, damage during transportation, and invisible defects that are difficult to detect. To address these issues, this research develops a defect detection tool for photovoltaic cells using a surface potential sensor connected via Bluetooth. This sensor works by detecting electrostatic field on the surface of the solar cells using a copper plate. The tool consists of several components, including an AD620 amplifier module to enhance the signal, an Arduino UNO as the microcontroller, and a Bluetooth HC-05 module to transmit data to an Android phone via Arduino Bluetooth Controller app. In testing, accuracy of the tool with a power supply input at three different distances 1mm, 3mm, and 5mm. In 1mm distance yielded better and more stable measurements, with a voltage range of 3.45V to 3.69V. In 3mm distance produced a voltage range of 3.31V to 3.54V, and the 5mm distance produced a voltage range of 2.76V to 2.99V. In testing tool under sunlight at a 1mm distance, the average voltage of normal cells was 3.534V, while voltage of damaged cells was 3.685V, indicating a difference of 0.151V. This research suggests that more cracks present in solar cells, the greater electrostatic field detected. The measurement data is then transmitted to an Android phone via Bluetooth HC-05, facilitating easier maintenance of the solar panels.

Downloads

Download data is not yet available.

References

[1] M. Ula, A. Rahmadani, and P. Elektronika Negeri Surabaya, “Rancang Bangun Maximum Power Point Tracking pada Panel Surya dengan Metode Incremental Conductance Menggunakan Zeta Konverter,” Jurnal Ilmiah Elektroteknika, vol. 22, no. 1, pp. 1–20, 2023, doi: https://doi.org/10.31358/techne.v22i1.334.
[2] R. O. Serfa Juan and Kim Jeha, “Photovoltaiccell Defect Detection Model based-on Extracted Electroluminescence Images using SVM Classifier,” in International Conference on Artificial Intelligence in Information and Communication, 2020, pp. 578–582.
[3] A. Kurniawan, “Perancangan Model dan Simulasi Modul Sel Surya Paralel Menggunakan MATLAB,” JURNAL TEKNIK MESIN, INDUSTRI, ELEKTRO DAN INFORMATIKA, vol. 1, no. 3, pp. 146– 151, 2022.
[4] Y. Sakhinatul, D. Jatmiko, and E. Suseno, “Wireless sensor system untuk pengukuran daya listrik panel surya,” Youngster Physics Journal, vol. 6, no. 3, pp. 221–228, 2017.
[5] A. Giyantara, R. Bagja Rizqullah, and Wisyahyadi, “PENGARUH PARTIAL SHADING TERHADAP DAYA KELUARAN PADA PANEL SURYA,” in Prosiding Seminar Nasional Kahuripan I Tahun 2020, Dec. 2020, pp. 280–283.
[6] A. Azrin Fakhira, Sudarti, and Yushardi, “Analisis Pemanfaatan Panel Surya Tipe Polycrystalline 100 Wp Sebagai Sumber Energi Alternatif Untuk Meningkatkan Kesejahteraan Masyarakat Pedesaan Di Indonesia,” Jurnal Pendidikan, Sains Dan Teknologi, vol. 02, no. 04, pp. 982–985, 2023, doi: https://doi.org/10.47233/jpst.v2i4.1318.
[7] N. Huda, “ENERGI BARU TERBARUKAN SOLAR CELL SEDERHANA UNTUK SISTEM PENERANGAN RUMAH TANGGA,” Jurnal Cahaya Bagaskara, vol. 3, no. 1, pp. 6–10, 2018.
[8] A. H. Andriawan and P. Slamet, “Tegangan Keluaran Solar cell Type Monocrystalline Sebagai Dasar Pertimbangan Pembangkit Tenaga Surya,” Jurnal Penelitian LPPM Untag, vol. 02, no. 01, pp. 39–45, 2017.
[9] Kementrian ESDM, “PERATURAN MENTERI ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA NOMOR 53
TAHUN 2018,” 2018. [Online]. Available: www.peraturan.go.id
[10] F. Afif and A. Martin, “Tinjauan Potensi dan Kebijakan Energi Surya di Indonesia,” Jurnal Engine: Energi, Manufaktur, dan Material, vol. 6, no. 1, pp. 43–52, 2022.
[11] S. E. P. Pagan, I. D. Sara, and H. Hasan, “Komparasi Kinerja Panel Surya Jenis Monokristal dan Polykristal Studi Kasus Cuaca Banda Aceh,” Jurnal Online Teknik Elektro, vol. 3, no. 4, pp. 19–23, 2018.
[12] M. Siregar, N. Evalina, Cholish, Abdullah, and Moh. Z. Haq, “Analisa Hubungan Seri Dan Paralel Terhadap Karakteristik Solar Sel Di Kota Medan,” RELE (Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro, vol. 3, no. 2, pp. 94–100, 2021.
[13] A. Gunadhi, D. Lestariningsih, and R. Sitepu, “PELATIHAN DAN IMPLEMENTASI TEKNOLOGI TENAGA SURYA UNTUK POMPA TANAMAN HYDROPONIK di RT 03 TAMBAK SEGARAN IV KELURAHAN TAMBAKREJO KECAMATAN SIMOKERTO KOTA SURABAYA,” Jurnal Leverage, Engagement, Empowerment of Community (LeECOM), vol. 5, no. 1, pp. 35–42, 2023, doi: https://doi.org/10.37715/leecom.v5i1.3619.
[14] A. M. A. Sabaawi, A. N. Khaleel, Z. S. Yahya, and A. M. A. Sabaawi, “Study of Efficiency-limiting Defects in Silicon Solar cells,” in 11th International Renewable Energy Congress, IREC 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/IREC48820.2020.9310427.
[15] J. Balzategui, L. Eciolaza, and N. Arana-Arexolaleiba, “Defect detection on Polycrystalline solar cells using Electroluminescence and Fully Convolutional Neural Network,” in Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, 2020, pp. 949–953. doi: 10.1109/SII46433.2020.9026211.
[16] S. Xiaoyu, Y. Liu, X. Xinghua, and C. Zhili, “Defect detection method for solar cells based on human visual characteristics,” in Proceedings - 2020 5th International Conference on Mechanical, Control and Computer Engineering, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 515–518. doi: 10.1109/ICMCCE51767.2020.00118.
[17] X. Zhang, T. Hou, Y. Hao, H. Shangguan, A. Wang, and S. Peng, “Surface Defect Detection of Solar cells Based on Multiscale Region Proposal Fusion Network,” IEEE Access, vol. 9, pp. 62093–62101, Apr. 2021, doi: 10.1109/ACCESS.2021.3074219.
[18] N. Wiliani, A. Sani, and A. T. Andyanto, “KLASIFIKASI KERUSAKAN DENGAN JARINGAN SYARAF BACKPROPAGATION PADA PERMUKAAN SOLAR PANEL,” JURNAL ILMU PENGETAHUAN DAN TEKNOLOGI KOMPUTER, vol. 5, no. 1, pp. 89–94, 2019, doi: https://doi.org/10.33480/jitk.v5i1.662.
[19] G. Widayana, “PEMANFAATAN ENERGI SURYA,” Jurnal Pendidikan Teknologi dan Kejuruan, vol. 9, no. 1, pp. 37–46, 2012, doi: https://doi.org/10.23887/jptk-undiksha.v9i1.2876.
[20] C. I. Cahyadi, I. G. A. A. Mas Oka, and D. Kusyadi, “EFEKTIFITAS KINERJA SOLAR CELL PADA PLTS DENGAN SUMBER 50WP,” Jurnal Teknovasi, vol. 07, no. 3, pp. 47–56, 2020.
[21] I. K. R. Fibrina Firmandanu, I. G. B. W. Kusuma, and I. W. B. Adnyana, “Pengujian Kinerja Panel Surya Pembangkit Listrik Tenaga Surya di PT Indonesia Power Unit Bisnis Pembangkitan Bali,” Jurnal METTEK, vol. 5, no. 2, pp. 105–109, 2019, doi: 10.24843/mettek.2019.v05.i02.p07.
[22] Madagaskar, A. Muin, M. Ali, and D. Istate, “ANALISA PENGARUH SUDUT DATANG SINAR MATAHARI TERHADAP KINERJA SOLAR CELL 50 Wp,” Jurnal Desiminasi Teknologi, vol. 9, no. 2, pp. 100–104, 2021.
[23] E. Fernandez and S. Prajapati, “A Study on the Influence of Open Circuit Voltage (Voc) and Short Circuit Current ( Isc) on Maximum Power Generated in a PhotovoltaicModule/Array,” in 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, 2019. doi: 10.1109/UPCON47278.2019.8980284.
[24] A. Pengaruh et al., “Jurnal Mesil (Mesin, Elektro, Sipil,),” vol. 1, no. 2, pp. 99–106, 2020.
[25] Z. Iqtimal, I. D. Sara, and D. Syahrizal, “APLIKASI SISTEM TENAGA SURYA SEBAGAI SUMBER TENAGA LISTRIK POMPA AIR,” KITEKTRO: Jurnal Online Teknik Elektro, vol. 3, no. 1, pp. 1–8, 2018.
[26] A. Ahmad, Muh. R. Akhdan, M. R. Ardiyansyah, and Usman, “RANCANG BANGUN PHOTOVOLTAICSIMULATOR UNTUK PENGUJIAN KARAKTERISTIK PANEL SURYA,” in Prosiding 5th Seminar Nasional Penelitian & Pengabdian Kepada Masyarakat 2021 , Telekomunisasi…, 2021.
[27] H. M. Ali, E. A. Setiawan, A. Setiawan, and D. Siregar, “ANALYSIS ON SOLAR PANEL PERFORMANCE AND PV-INVERTER CONFIGURATION FOR TROPICAL REGION,” Journal of Thermal Engineering, vol. 3, no. 3, pp. 1259–1270, 2017, doi: 10.18186/journal- of-thermal-engineering.323392.
[28] J. Sun, L. Wang, J. Li, F. Li, J. Li, and H. Lu, Online oil debris monitoring of rotating machinery: A detailed review of more than three decades, vol. 149. Academic Press, 2021. doi: 10.1016/j.ymssp.2020.107341.
[29] Z. Wen, J. Hou, and J. Atkin, A review of electrostatic monitoring technology: The state of the art and future research directions, vol. 94. Elsevier Ltd, 2017. doi: 10.1016/j.paerosci.2017.07.003.
[30] A. Hutahaean and A. S. Tamsir, “ANALISIS KAPASITANSI SENSOR DIELEKTRIK MENGGUNAKAN CDC (CAPACITANCE TO DIGITAL CONVERTER) AD7746,” 2013, Accessed: Mar. 04, 2024. [Online]. Available: https://lontar.ui.ac.id/detail?id=20331581&lokasi=lokal
[31] H. M. Nur, P. A. Topan, T. Andriani, and A. Jaya, “PEMBUATAN ALAT PENGUKUR ARUS BERNILAI MICRO MENGGUNAKAN RESISTOR SHUNT DAN MODUL OP-AMP AD620,” Jurnal Altron, vol. 02, no. 01, pp. 46–53, 2023.
[32] S. SADI and S. MULYATI, “MONITORING SUHU RUANGAN MENGGUNAKAN MODUL HC 05 BERBASIS ANDROID,” Jurnal Teknik, vol. 8, no. 2, pp. 50–55, 2019.
[33] S. T. Subandi, M. A. Novianta, and D. F. Athallah, “RANCANG BANGUN PEMBATASAN PEMAKAIAN AIR MINUM BERBASIS ARDUINO MEGA 2560 PRO MINI DENGAN SENSOR WATER FLOW YF-S204,” Jurnal Elektrikal, vol. 8, no. 2, pp. 1–9, 2021, Accessed: Feb. 03, 2024. [Online]. Available: https://ejournal.akprind.ac.id/index.php/elektrikal/article/view/3734
[34] B. Febiyanto et al., “PERANCANGAN ALAT PEMBERI PAKAN AYAM SECARA OTOMATIS BERBASIS MIKROKONTROLER ATMEGA16,” Jurnal Elektrikal, vol. 1, no. 1, pp. 1–8, 2014, Accessed: Feb. 04, 2024. [Online]. Available: https://ejournal.akprind.ac.id/index.php/elektrikal/article/view/2693
[35] M. Mario, B. P. Lapanporo, and M. Muliadi, “Rancang Bangun Sistem Proteksi dan Monitoring Penggunaan Daya Listrik Pada Beban Skala Rumah Tangga Berbasis Mikrokontroler ATMega328P,” Jurnal Untan, vol. 6, no. 1, pp. 26–33, 2018.
[36] T. Hidayat, “Teknologi Deteksi dan Diagnosis Kerusakan pada PLTS,” JURNAL TEKNIK ELEKTRO INSTITUT TEKNOLOGI PADANG, vol. 9, no. 1, Jan. 2020, doi: 10.21063/JTE.2020.3133903.
[37] S. Miyajima, K. Nishioka, and Y. Hishikawa, “Non-contact Voltage Measurement of Solar cell with Electrostatic Voltmeter,” in 2017 IEEE 44th PhotovoltaicSpecialist Conference (PVSC), 2017. doi: 10.1109/PVSC.2017.8366426.
[38] R. Alfanz, M. A. Kevin, S. Wardoyo, and I. Muttakin, “STUDI FAILURE DETECTION DAN JENIS CRACK PADA SOLAR CELL MENGGUNAKAN METODE ELECTROLUMINESCENCE BERBASIS PENGOLAHAN CITRA,” Jurnal Ilmiah SETRUM, vol. 12, no. 1, 2023.
[39] Y. Yan et al., “Their principles and applications,” Electrostatic sensors , vol. 169, 2021, doi: https://doi.org/10.1016/j.measurement.2020.108506
Published
2025-02-06
How to Cite
ALFANZ, rocky; MUTTAQIN, Imamul; CAROL, Juan. Perancangan Deteksi Cacat Pada Layer Solar Cell Menggunakan Sensor Tegangan Static Permukaan Berbasis Bluetooth. Majalah Ilmiah Teknologi Elektro, [S.l.], v. 23, n. 2, p. 283-290, feb. 2025. ISSN 2503-2372. Available at: <https://ojs.unud.ac.id/index.php/mite/article/view/117465>. Date accessed: 10 mar. 2025. doi: https://doi.org/10.24843/MITE.2024.v23i02.P12.