Sistem Mandiri Energi Pada Alat Deteksi Total Suspended Particulate
Abstract
Many IoT systems depend on fossil energy. Therefore, with this research, an Energy Independent System was developed on the TSP Detection Tool, namely an IoT monitoring system that is able to fulfill its own energy without PLN energy. The purpose of this research is to create a TSP monitoring system that is able to fulfill its own energy for 24 hours. The research consists of collecting tools and materials, making and assembling the unit testing system, testing energy independence, testing wireless transmission of particulate data. The system consists of nodes, Gateway, DHT22 sensor, SEN1077 sensor, anemometer sensor, wind direction sensor, battery and mppt. The average energy generated during the test was 65.3WH, the energy generated each day tends to be different, this is due to the fact that the energy generated is different from the energy generated during the test. Tends to be different due to fluctuations in solar irradiation that are not constant. In sending data wirelessly to the android application, the data received is the same as the data sent, it's just that there is a delay in sending data Which is less than one second. Based on energy independent testing obtained there is a difference in energy in some tests, the system is still able to operate independently without PLN energy, due to the presence of Backup energy. In the research the system managed to fulfill its own energy but the system needs data transmission management so that the system can run in the long term.
Downloads
References
[2] I. Miftahul Ihsan, M. Yani, R. Hidayat, and T. Permatasari, “Fluctuation of Particulate Air Pollutant and Its Risk Level to the Public Health of Bogor City,” Jurnal Teknologi Lingkungan, vol. 22, no. 1, pp. 038–047, 2021.
[3] Presiden Republik Indonesia, Peraturan Pemerintah Republik Indonesia No 23 Tahun 2021. 2021.
[4] T. Sutikno, D. R. Susanto, and H. S. Purnama, “Sistem Monitoring Debit Air Berbasis Internet of Things pada Saluran Air,” Majalah Ilmiah Teknologi Elektro, vol. 22, no. 2, p. 159, Dec. 2023, doi: 10.24843/mite.2023.v22i02.p01.
[5] P. A. P. Wiradani, L. Jasa, and P. Rahardjo, “Analisis Perbandingan Produktivitas Material Budidaya Akuaponik Berbasis IoT (Internet of Things) dengan Budidaya Akuaponik Konvensional,” Majalah Ilmiah Teknologi Elektro, vol. 21, no. 2, p. 263, Dec. 2022, doi: 10.24843/mite.2022.v21i02.p14.
[6] A. H. Hardiansyah, I. N. S. Kumara, and R. S. Hartati, “IoT Berbasis NodeMCU ESP8266 Sebagai Decision Support System Pengelolaan Energi Gedung Telkomsel Renon,” Majalah Ilmiah Teknologi Elektro, vol. 23, no. 1, p. 103, Aug. 2024, doi: 10.24843/mite.2024.v23i01.p11.
[7] S. Servinus, I. N. S. Kumara, and R. S. Hartati, “Rancang Bangun Simulator Smart Home Berbasis IoT Dengan Sumber Daya PLTS,” Majalah Ilmiah Teknologi Elektro, vol. 23, no. 1, p. 97, Aug. 2024, doi: 10.24843/mite.2024.v23i01.p10.
[8] H. Assiddiq et al., “Studi Pemanfaatan Energi Matahari Sebagai Sumber Energi Alternatif Terbarukan Berbasis Sel Fotovoltaik untuk Mengatasi Kebutuhan Listrik Rumah Sederhana di Daerah Terpencil,” Jurnal Teknik Mesin UNISKA, vol. 3, no. 2, pp. 88–93, 2018.
[9] A. J. Widianto, A. Gautama Putrada, and R. R. Pahlevi, “Analisis Kinerja Multi-Application Energy Harvesting pada IoT Aquaponic,” in e-Proceeding of Engineering, 2021, pp. 9924–9931.
[10] H. Elahi, K. Munir, M. Eugeni, S. Atek, and P. Gaudenzi, “Energy Harvesting towards Self-Powered IoT Devices,” Energies (Basel), vol. 13, no. 21, p. 5528, Oct. 2020, doi: 10.3390/en13215528.
[11] F. Wu, J.-M. Redoute, and M. R. Yuce, “WE-Safe: A Self-Powered Wearable IoT Sensor Network for Safety Applications Based on LoRa,” IEEE Access, vol. 6, pp. 40846–40853, Jul. 2018, doi: 10.1109/ACCESS.2018.2859383.
[12] G. Agus Wira Dharma, D. Giriantari, I. Wayan Sukerayasa, I. Nyoman Setiawan, W. Gede Ariastina, and I. Nyoman Satya Kumara, “Perancangan Pembangkit Listrik Tenaga Surya (PLTS) pada Atap Gedung Parkir Bandar Udara Internasional I Gusti Ngurah Rai,” Jurnal SPEKTRUM, vol. 11, no. 2, pp. 11–20, 2024.
[13] V. R. Yandri, “Prospek Pengembangan Energi Surya untuk Kebutuhan Listrik di Indonesia,” JURNAL ILMU FISIKA, vol. 4, no. 1, pp. 14–19, 2012.
[14] T. Sutikno, J. Alfahri, and H. S. Purnama, “Monitoring Tegangan dan Arus Pada Panel Surya Menggunakan IoT,” Majalah Ilmiah Teknologi Elektro, vol. 22, no. 1, p. 153, Jun. 2023, doi: 10.24843/mite.2023.v22i01.p20.
[15] S. Zeadally, F. K. Shaikh, A. Talpur, and Q. Z. Sheng, “Design architectures for energy harvesting in the Internet of Things,” Renewable and Sustainable Energy Reviews, vol. 128, p. 109901, Aug. 2020, doi: 10.1016/j.rser.2020.109901.
[16] B. H. Purwoto, J. Jatmiko, M. A. Fadilah, and I. F. Huda, “Efisiensi Penggunaan Panel Surya sebagai Sumber Energi Alternatif,” Emitor: Jurnal Teknik Elektro, vol. 18, no. 1, pp. 10–14, Mar. 2018, doi: 10.23917/emitor.v18i01.6251.
[17] K. Hie Khwee, “Pengaruh Temperatur Terhadap Kapasitas Daya Panel Surya (Studi Kasus: Pontianak),” Jurnal ELKHA, vol. 5, no. 2, pp. 23–26, 2013, doi: https://doi.org/10.26418/elkha.v5i2.
[18] I. Winarno and L. Natasari, “Maximum Power Point Tracker (MPPT) Berdasarkan Metode Perturb and Observe dengan Sistem Tracking Panel Surya Single Axis,” in Seminar Nasional Sains dan Teknologi, 2017, pp. 1–9.
[19] Gede Patrianaya Margayasa Wirsuyana, Rukmi Sari Hartati, and Ida Bagus Gede Manuaba, “Metode Maximum Power Point Tracking pada Panel Surya : Sebuah Tinjauan Literatur,” Techné : Jurnal Ilmiah Elektroteknika, vol. 21, no. 2, pp. 211–224, Sep. 2022, doi: 10.31358/techne.v21i2.321.
[20] Yusro Hakimah, “Analisis Kebutuhan Energi Listrik dan Prediksi Penambahan Pembangkit Listrik di Sumatera Selatan,” Jurnal Desiminasi Teknologi, vol. 7, no. 2, pp. 86–156, 2019.


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License