Klasifikasi Sel Nukleus Pap Smear Menggunakan Metode Backpropagation Neural Network
Abstract
Kanker serviks merupakan salah satu penyakit berbahaya yang biasanya menyerang pada wanita. Kanker serviks dapat dicegah dengan melakukan deteksi dini, yaitu melalui tes pap smear untuk mengenali sel nukleus abnormal. Penyakit serviks secara teratur terbentuk dari perubahan prakanker lebih dari 10 hingga 20 tahun. Penelitian ini mengusulkan pembuatan aplikasi klasifikasi sel nukleus pap smear untuk mempermudah deteksi dini kanker serviks dengan menggabungkan teknik machine learning dan pengolahan citra digital. Aplikasi berfungsi mempermudah para patologi untuk mendeteksi sel nukleus pap smear normal dan abnormal. Tahap yang dilalui untuk memperoleh hasil klasifikasi, yaitu preprocessing, segmentasi, ekstraksi ciri dan klasifikasi. Dua jenis kelas diklasifikasikan pada penelitian ini, yaitu Sel Abnormal dan Sel Normal. Akurasi yang dihasilkan dari proses uji coba, yaitu sebesar 88.8% dan error rate sebesar 11.2%.
Kata Kunci : Neural Network, K-Means Clustering, Regionprops, GLCM, Pap Smear