IN SILICO STUDY OF ANTIDIABETIC ACTIVITY AND TOXICITY OF TRANS-ANETHOLE, FENCHONE, AND ESTRAGOLE
Abstract
Background: An unhealthy lifestyle characterized by consuming foods with a high glycemic index can increase blood sugar levels significantly. Diabetes mellitus therapy using antidiabetic drugs in patients aims to help control blood sugar levels. Objective: This study aims to determine the affinity and interaction models of trans-anethole, fenchone, and estragole as test compounds against the target proteins pancreatic ?-amylase and dipeptidyl peptidase-4 (DPP-4) enzyme, as well as in silico toxicity prediction of the test compounds. Methods: This study used AutoDock 4.2 as a molecular docking method to evaluate the affinity and interaction models of the test compounds against the target proteins pancreatic ?-amylase (PDB ID: 2QV4) and DPP-4 (PDB ID: 3W2T) as a potential antidiabetic agent. In addition, the toxicity of these compounds was predicted using the Toxtree program with Cramer Rules, Benigni/Bossa, Verhaar Sceme, and Kroes TTC parameters. Results: The results showed that the test compounds had binding energies that showed their affinity to the target protein. The trans-anethole did not show any structural features indicating potential toxicity. Fenchone has the class III category for the Cramer Rules parameters, and estragole has a structural alert for genotoxic carcinogenicity based on the Benigni/Bossa Rulebase parameter. Conclusion: Trans-anethole, fenchone, and estragole have been observed to exhibit antidiabetic potential through their interactions with the pancreatic proteins ?-amylase and dipeptidyl peptidase-4 (DPP-4) enzyme, although their effectiveness is not as high as that of the native ligands. Additionally, further toxicity testing is required for the three compounds.
Keywords: Trans-anethole, Fenchone, Estragole, Molecular Docking, Antidiabetic
Downloads
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution 4.0 International License.