Penentuan Parameter Tingkat Ke-Fuzzy-an Fuzzy C-Means dan Pengaruhnya Terhadap Proses Algoritma
Abstract
Fuzzy C-Means (FCM) is an algorithm in the process of data clustering that has limitations in the form of being sensitive to the parameters used so that in some cases, the final solution provided is not an optimal solution. One of the influential parameters is the fuzziness level of the algorithm. This parameter is a random real number greater than 1. The determination of these parameters is adjusted to the data used and evaluated with the condition that it reaches a minimum number of iterations for convergence, a small objective final value, and a DBI cluster validity value close to 0. In this study, Indonesian automotive sales data received the optimal algorithm fuzzy level parameter at a value of 2 with other fixed parameters, such as the number of clusters is 3, the smallest error expected to be is 0.00001, and the maximum iteration is 100.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.