Penentuan Parameter Tingkat Ke-Fuzzy-an Fuzzy C-Means dan Pengaruhnya Terhadap Proses Algoritma

  • Ni Putu Ayu Triana Universitas Udayana
  • Luh Gede Astuti Universitas Udayana

Abstract

Fuzzy C-Means (FCM) is an algorithm in the process of data clustering that has limitations in the form of being sensitive to the parameters used so that in some cases, the final solution provided is not an optimal solution. One of the influential parameters is the fuzziness level of the algorithm. This parameter is a random real number greater than 1. The determination of these parameters is adjusted to the data used and evaluated with the condition that it reaches a minimum number of iterations for convergence, a small objective final value, and a DBI cluster validity value close to 0. In this study, Indonesian automotive sales data received the optimal algorithm fuzzy level parameter at a value of 2 with other fixed parameters, such as the number of clusters is 3, the smallest error expected to be is 0.00001, and the maximum iteration is 100.

Published
2022-11-25
How to Cite
TRIANA, Ni Putu Ayu; ASTUTI, Luh Gede. Penentuan Parameter Tingkat Ke-Fuzzy-an Fuzzy C-Means dan Pengaruhnya Terhadap Proses Algoritma. Jurnal Nasional Teknologi Informasi dan Aplikasinya (JNATIA), [S.l.], v. 1, n. 1, p. 205-210, nov. 2022. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/92640>. Date accessed: 27 jan. 2023.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.