Analisis Sentimen Ulasan Pengguna Aplikasi Pelayanan Masyarakat Dengan Menggunakan Algoritma Random Forest

  • I Nyoman Arlan Kusuma Ardika Universitas Udayana
  • I Gede Arta Wibawa S. T., M. Kom. Universitas Udayana


Public services by the government generally have an impact that is quickly responded to by the community. One form of public response is through their opinions through writings written on social media or reviews of applications developed by the government. Machine learning has been widely used for automatic opinion mining to classify sentiment classes. The classification method that can be used to classify public opinion into positive or negative sentiment classes is random forest. Based on the test results of the random forest algorithm in classifying sentiments from user reviews of public service applications by the government, the highest accuracy value was obtained at 84% by performing hyperparameter tuning.


[1] W. Paulina, F. A. Bachtiar and N. Rusydi “Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Terhadap Kertanegara Premium Guest House Menggunakan Support Vector Machine”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 4, p. 1141-1149, 2020
[2] Rosdiana, E. Tungadi, Z. Saharuna and M. N. Y. Utomo, M. N. “Analisis Sentimen pada Twitter terhadap Pelayanan Pemerintah Kota Makassar”. Jurnal Kategori Teknik Komputer dan Jaringan, p 87-93, 2019
[3] F. N. Zamzami, K. Adiwijaya and M. Dwifebri. “Analisis Sentimen Terhadap Review Film Menggunakan Metode Modified Balanced Random Forest dan Mutual Information”. Jurnal Media informatika Budidarma, p 415-421, 2021
[4] S. Ailiyya, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Tokopedia Menggunakan Support Vector Machine”, Universitas Islam Negeri Syarif Hidayatullah, 2020.
[5] A. Kadhim. “An Evaluation of Preprocessing Techniques for Text Classification”. International Journal of Computer Science and Information Security (LISCIS), p. 22-32, 2018
[6] O. Gilbert, “Sentiment Analysis with TFIDF and Random Forest”, 5 May 2020. [Online]. Available: [Accessed on 22 September 2022]
[7] Adeputri, “text-preprocessing”, 9 July 2021. [Online]. Available: [Accessed on 24 September 2022]
[8] Y. A. Rohman. “Spell Check Bahasa Indonesia menggunakan Pre-trained Word Vectors Fasttext Model”. 3 March 2020. [Online]. Available: [Accessed on 25 September 2022]
[9] U. Parida, M. Nayak and A. K. Nayak, "News Text Categorization using Random Forest and Naïve Bayes," 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON), p. 1-4, 2021
[10] K. Kirasich, T. Smith and B. Sadler. “Random Forest vs Logistic Regression: Binary Classification for Heterogeneous Datasets”. SMU Data Science Review, vol. 1, no. 3, p. 1-24, 2018
[11] M. Abuella and B. Chowdhury, "Random forest ensemble of support vector regression models for solar power forecasting," 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), p. 1-5, 2017
[12] Nuranisah, “Analisis Menggunakan Random Forest Dengan Gini Index Algoritma Pada Data”, 2021 Seminar of Social Sciences Engineering & Humaniora (SCENARIO), p. 19-24, 2021
[13] A. Dhar, N.S. Dash and K. Roy, “Application of TF-IDF Feature for Categorizing Documents of Online Bangla Web Text Corpus”. Intelligent Engineering Informatics, p. 51-59, 2018
[14] M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika and E. Aswini, "Credit Card Fraud Detection Using Random Forest Algorithm", 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), pp. 149-153, 2019
[15] J. Mingyu, “Google-Play-Scraper”, 19 August 2022. [Online]. Available: [Accessed on 25 September 2022]
[16] P. Probst, MN. Wright and A-L. Boulesteix, “Hyperparameters and tuning strategies for random forest”. WIREs Data Mining Knowledge Discovery, 2019
How to Cite
ARDIKA, I Nyoman Arlan Kusuma; WIBAWA S. T., M. KOM., I Gede Arta. Analisis Sentimen Ulasan Pengguna Aplikasi Pelayanan Masyarakat Dengan Menggunakan Algoritma Random Forest. Jurnal Nasional Teknologi Informasi dan Aplikasinya (JNATIA), [S.l.], v. 1, n. 1, p. 361-372, nov. 2022. Available at: <>. Date accessed: 26 jan. 2023.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.