Implementasi Metode K-Nearest Neighbors Pada Sistem Klasifikasi Kualitas Udara Berdasarkan Partikulat Berbahaya Yang Terkandung

  • I Komang Roni Sudarmawan Universitas Udayana
  • I Gusti Agung Gede Arya Kadyanan Universitas Udayana
  • I Wayan Supriana Universitas Udayana

Abstract

Air pollution is one of the most dangerous issues for health in the current industrial 4.0 era. Air quality, especially in big cities such as Jakarta, which is the capital of Indonesia as well as the center of government, is an issue that is being eradicated by the government. With a very high percentage of the productive age of the population in the city of Jakarta, motor vehicle activity in the city of Jakarta will also be equivalent to the productive age of the population of the city of Jakarta. This study will design an air quality classification system using the K-Nearest Neighbors method. Before being classified, a data preprocessing process will be carried out, such as handling missing values ??and handling outliers. In addition, because the data obtained is quite small, a K-Fold Validation process will be carried out for the model selection process. Finally, the performance evaluation of the model will be carried out using the confusion matrix method.

References

[1] V. B. Kusnandar, "Lebih dari 70% Penduduk Jakarta Merupakan Usia Produktif”, 22 November 2021. [Online]. Available: https://databoks.katadata.co.id/datapublish/2021/11/22/lebih-dari-70-penduduk-jakarta-merupakan-usia-produktif#:~:text=Jumlah%20Penduduk%20DKI%20Jakarta%20sebanyak,(15%2D64%20tahun. [15 June 2022]
[2] D. Chaniago, A. Zahara, I. S. Ramadhani, "INDEKS STANDAR PENCEMAR UDARA (ISPU) SEBAGAI INFORMASI MUTU UDARA AMBIEN DI INDONESIA”, 24 September 2020. [Online]. Available: https://ditppu.menlhk.go.id/portal/read/indeks-standar-pencemar-udara-ispu-sebagai-informasi-mutu-udara-ambien-di-indonesia. [9 March 2022]
[3] R. Ramadhan, "Indeks Standar Pencemar Udara (ISPU) Berbasis Android : "ISPU Net"”, 2 August 2021. [Online]. Available: https://lingkunganhidup.jogjakota.go.id/detail/index/330. [9 March 2021]
[4] P. M. A. Putra, and I. G. A. G. A. Kadyanan, "Implementation of K-Means Clustering Algorithm in Determining Classification of the Spread of the COVID19 Virus in Bali" Jurnal Elektronik Ilmu Komputer Udayana, vol. 10, no. 1, p. 21-28, 2021.
[5] Y. Wiyli, "Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah" Jurnal Matematika, Statistika, & Komputasi, vol. 9, no. 1, p. 57-68, 2012.
[6] Suhartini, H. Bahtiar, "Klasifikasi Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Kelayakan Bantuan Rehabilitasi Rumah Tidak Layak Huni Pada Desa Lenek Duren Kecamatan Aikmel Kabupaten Lombok Timu" Infotek : Jurnal Informatika dan Teknologi, vol. 2, no. 2, p. 79-85, 2019.
[7] Y. Yahya and W. P. Hidayanti, "Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada “Lombok Vape On”" Infotek : Jurnal Informatika dan Teknologi, vol. 3, no. 2, p. 104-114, 2020.
[8] Y. Yahya and R. Zuliana, “Prediksi Jumlah Penggunaan BBM Perbulan Menggunakan Algoritma Decition Tree(C4.5)” Infotek : Jurnal Informatika dan Teknologi, vol. 1, no. 1, pp. 56–63, 2018.
[9] A. Rizal, "K-Nearest Neighbor (K-NN)”, 26 July 2011. [Online]. Available: https://achmadrizal.staff.telkomuniversity.ac.id/k-nearest-neighbor-k-nn/. [15 June 2022].
[10] A. Solichin, “Mengukur Kinerja Algoritma Klasifikasi dengan Confusion Matrix”, 19 March 2017. [Online]. Available: https://achmatim.net/2017/03/19/mengukur-kinerja-algoritma-klasifikasi-dengan-confusion-matrix/. [15 June 2022].
Published
2022-11-25
How to Cite
SUDARMAWAN, I Komang Roni; KADYANAN, I Gusti Agung Gede Arya; SUPRIANA, I Wayan. Implementasi Metode K-Nearest Neighbors Pada Sistem Klasifikasi Kualitas Udara Berdasarkan Partikulat Berbahaya Yang Terkandung. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 1, n. 1, p. 417-422, nov. 2022. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/92559>. Date accessed: 08 jan. 2025.