Klasifikasi Citra Elektrokardiogram untuk Deteksi Penyakit Jantung Menggunakan Metode GLCM dan SVM

  • Andreas Panangian Tamba Universitas Udayana
  • I Gede Arta Wibawa Udayana University

Abstract

Heart disease is a major cause of death worldwide. Electrocardiogram (ECG) is a common method used to detect heart abnormalities. Analyzing ECG signals requires expertise and can be time-consuming. This study investigated the use of machine learning to classify ECG images for heart disease detection. The proposed method utilizes Gray Level Co-occurrence Matrix (GLCM) for feature extraction such as Dissimilarity, contrast, energy, ASM, homogeneity and Correlation. Meanwhile using Support Vector Machine (SVM) for the classification. We achieved an accuracy of 99.61% using this approach. The results suggest that the combination of GLCM and SVM can be a valuable tool for ECG image classification and potentially aid in early and accurate diagnosis of heart disease.


Keywords: Electrocardiography, Support Vector Machine, Gray Level Co-Occurrence Matrix, Classification, Myocardial Infarction

Published
2024-05-01
How to Cite
TAMBA, Andreas Panangian; WIBAWA, I Gede Arta. Klasifikasi Citra Elektrokardiogram untuk Deteksi Penyakit Jantung Menggunakan Metode GLCM dan SVM. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 2, n. 3, p. 511-520, may 2024. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/116043>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.24843/JNATIA.2024.v02.i03.p09.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.