Klasifikasi Kematangan Sayuran Pare dengan Metode KNN

  • I Gede Yogananda Adi Baskara Udayana University
  • Luh Arida Rahning Putri Udayana University

Abstract

The bitter melon plant (Momordica charantia L) is a vegetable commodity that has commercial potential if cultivated on an agribusiness scale. The bitter melon plant products currently have quite a lot of consumers and have even entered supermarkets. However, the selection of bitter melon vegetables still uses human eye assessment which has the weakness of being subjective and inconsistent, so the level of accuracy is low. Based on these problems, researchers will create a system that is able to classify the level of maturity of bitter melon vegetables using HSV feature extraction with the KNN method at the classification stage and with the help of the Python programming language. In this research, 160 datasets will be used which are divided into 3 types of classes, namelcategy cooked bitter melon vegetables and raw bitter melon vegetables. The dataset is divided into two ories, namely 128 training data and 32 test data. The next stage is testing the data using the K-Nearest Neighbor method using the value k=3. From the test results, an accuracy rate of 88% was obtained.


Keywords: Python, Kematangan, Pare, KNN, HSV

Published
2024-05-01
How to Cite
BASKARA, I Gede Yogananda Adi; PUTRI, Luh Arida Rahning. Klasifikasi Kematangan Sayuran Pare dengan Metode KNN. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 2, n. 3, p. 631-638, may 2024. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/115991>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.24843/JNATIA.2024.v02.i03.p23.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.