Analisis Sentimen Ulasan Aplikasi GoTube Menggunakan Naive Bayes Berbasis Particle Swarm Optimization
Abstract
This research employs the sentiment analysis of GoTube application reviews using Naïve Bayes based on Particle Swarm Optimization (PSO). The study focuses on addressing the challenge of efficiently managing and analyzing user comments in the development of the GoTube application. By implementing automated sentiment analysis using text mining techniques, developers can enhance user experience and save resources. The methodology involves data collection, preprocessing, feature extraction using TF-IDF, classification using Naïve Bayes, and evaluation with various parameters. Additionally, Particle Swarm Optimization is utilized for feature selection to enhance the performance of the Naïve Bayes Classifier. The study aims to contribute to the improvement of GoTube's service quality and user satisfaction.
Keywords: Sentiment Analysis, Naïve Bayes, Particle Swarm Optimization, GoTube Application
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.