Optimasi Hyperparameter Algoritma Support Vector Machine dalam Klasifikasi Penyakit Beta-Thalassemia

  • I Nyoman Adi Mahendra Putra Udayana University
  • Cokorda Pramartha Universitas Udayana

Abstract

Beta-thalassemia, a type of thalassemia disease caused by genetic variations, forces sufferers to receive regular blood transfusions for survival. Therefore, classification of this disease is important to reduce the number of births of beta-thalassemia patients in the future. 5066 beta-thalassemia carrier patient data from the Punjab Thalassemia Prevention and Program (PTPP) case study was taken as the source in this study which was accessed through the github.com website. Preprocessing is done for class alignment to avoid data imbalance, feature selection to streamline model performance, and normalization of feature values to a certain scale. In this research, the main focus is on applying the performance of the Support Vector Machine (SVM) algorithm to obtain classification results. Before entering the final model, hyperparameter tuning is required to obtain suitable parameter values to be entered into the model. hyperparameter tuning that will be carried out include "C" (regularization parameter), "kernel" (kernel type), "gamma" (kernel parameter for non-linear kernels), and "degree" (polynomial degree for polynomial kernels), carried out before the model is evaluated. The accuracy results were evaluated using confusion matrix, resulting in precision of 99.24%, recall of 99.62%, f1-score of 99.43%, and accuracy of 99.42% after hyperparameter tuning where the best parameters are "'C': 1, 'gamma': 100, 'kernel': 'rbf'" with an average test score of 0.993494149.

References

[1] D. Setiawan, H. Setiawan, and A. Nurmalasari, “Edukasi Penyakit Thalasemia Pada Mahasiswa Stikes Muhammadiyah Ciamis,” SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan, vol. 6, no. 3, pp. 1098-1102, 2022.
[2] R. Roslaeni, S. Ratunanda, and A. L. Susanti, “Skrining Talasemia Bagi Mahasiswa Fakultas Kedokteran Universitas Jenderal Achmad Yani,” Jurnal Abdimas Kartika Wijayakusuma, vol. 5, no. 1, pp.168-173, 2024. doi: 10.26874/jakw.v5i1.369.
[3] M. N. Praramdana, M. A. Rusydi, and M. Rizky, “Sebuah Tinjauan Pustaka: Penatalaksanaan Beta Thalasemia,” Jurnal Medika Hutama, vol. 4, no. 2, pp. 3257-3264, 2023.
[4] W. Chauhan, S. Shoaib, R. Fatma, Z. Zaka-ur-Rab, and M. Afzal, “Beta-Thalassemia and the Advent of New Interventions Beyond Transfusion and Iron Chelation,” British Journal of Clinical Pharmacology, vol. 88, no. 8, pp. 3610–3626, 2022. doi: 10.1111/bcp.15343.
[5] D. S. Rahayu, Nursafika, J. Afifah, and S. Intan, “Classification of Diabetes Mellitus Using C4.5 Algorithm, Support Vector Machine (SVM) and Linear Regression,” SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, vol. 1, no. 1, pp. 56-63, 2023.
[6] Mardewi, N. Yarkuran, Sofyan, and F. Aziz, “Klasifikasi Kategori Obat Menggunakan Algoritma Support Vector Machine,” Journal Pharmacy And Application Of Computer Sciences, vol. 1, no. 1, pp. 27-32, 2023.
[7] Yennimar, A. Rasid, and S. Kenedy, “Implementation Of Support Vector Machine Algorithm With Hyper-Tuning Randomized Search In Stroke Prediction,” Journal of Information Systems and Computer Science Prima, vol. 6, no. 2, pp. 61-65, 2023.
[8] Yuyun, N. Hidayah, and S. Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.
[9] H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 89–93, 2020, doi: 10.14710/jtsiskom.8.2.2020.89-93.
[10] H. S. Wafa, A. Id Hadiana, and F. R. Umbara, “Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM),” Informatics And Digital Expert (INDEX), vol. 4, no. 1, pp. 40-45, 2022.
[11] P. W. A. Wibawa and C. Pramartha, “Systematic Literature Review: Machine Learning Methods in Emotion Classification in Textual Data,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 3, pp. 425–433, 2023, doi: 10.32736/sisfokom.v12i3.1787.
[12] Z. M. E. Darmawan and A. F. Dianta, “Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM,” Teknologi: Jurnal Ilmiah Sistem Informasi, vol. 13, no. 1, pp. 8–15, 2023, doi: 10.26594/teknologi.v13i1.3098.
[13] S. T. Kusuma and T. B. Sasongko, “Optimasi K-Nearest Neighbor dengan Grid Search CV pada Prediksi Kanker Paru-Paru,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 4, pp. 2162-2171, 2023.
[14] M. Fajri and A. Primajaya, “Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search,” Journal of Applied Informatics and Computing (JAIC), vol. 7, no. 1, pp. 10-15, 2023.
[15] R. Yunita and M. Kamayani, “Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Kebijakan Penghapusan Kewajiban Skripsi,” Indonesian Journal of Computer Science, vol. 12, no.5, pp. 2879-2890, 2023.
Published
2025-02-01
How to Cite
PUTRA, I Nyoman Adi Mahendra; PRAMARTHA, Cokorda. Optimasi Hyperparameter Algoritma Support Vector Machine dalam Klasifikasi Penyakit Beta-Thalassemia. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 3, n. 2, p. 283-294, feb. 2025. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/115958>. Date accessed: 30 jan. 2025. doi: https://doi.org/10.24843/JNATIA.2025.v03.i02.p07.