Memprediksi Kelulusan Mahasiswa: Graduate dan Dropout dengan Support Vector Machine dan GridSearchCV
Abstract
In today's educational landscape, having a model to predict whether a student will graduate or drop out based on their academic statistics is highly beneficial. Such a model allows for early assessment of academic success. Human calculations alone can be time-consuming and often lack accuracy, hence the introduction of machine learning models to address this issue. This research utilizes a dataset comprising undergraduate students from various majors in higher education institutions. The data were collected while the students were still enrolled, with their grades from the first year serving as a key feature. The response variable in the dataset is labeled as either 'dropout' or 'graduate'. We employ Support Vector Machines (SVM) with GridSearchCV optimization to build the predictive model. The goal of this model is to predict a student’s academic success as early as their first-year statistics are available. If a student is predicted to drop out, targeted interventions can be provided to help them overcome challenges, ultimately aiming to improve graduation rates.
Keywords: siswa, akademik, dropout, graduate, SVM, hyperparameter tuning, klasifikasi, prediksi, machine learning, GridSearchCV
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.