Isolation Forest dengan Exploratory Data Analysis pada Anomaly Detection untuk Data Transaksi
Abstract
Managing value of data is one of the key aspects of presenting analysis for decision making support in various cases. One of such method is by managing detecting anomaly in the data. This research focuses on implementing Isolation Forest result of anomaly detection. This method is used on transaction dataset from Kaggle with about more than 500.000 records. The result this research shows that Isolation Forest used in the dataset have 0.899 in accuracy, 0.00649 in precision, 0.504 in recall, and 0.013 in F1 score.
Keywords: Isolation Forest, iForest, Anomaly Detection
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.