Penyusunan Sistem Rekomendasi Produk Diecast Mobil Dengan Metode Content-Based Filtering (CBF)
Abstract
The growing popularity of diecast car collections has created a demand for efficient recommendation systems to assist collectors in discovering new products. This study focuses on the development of a content-based filtering (CBF) recommendation system for diecast car products. The system employs the TF-IDF (Term Frequency-Inverse Document Frequency) and cosine similarity techniques to calculate the relevance between products and user preferences. By analyzing the textual features of diecast car products, such as brand, model, and specifications, the CBF system generates personalized recommendations based on similarity scores. The evaluation of the system's performance demonstrates its effectiveness in providing accurate and relevant recommendations, which enhance the user experience and facilitate the exploration of the diecast car market.
Keywords: Content-Based Filtering, Diecast cars, Recommendation System, TF-IDF, Cosine Similarity
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.