Implementasi Random Forest dengan LASSO dalam Klasifikasi Penyakit yang Ditularkan Melalui Nyamuk

  • Kadek Dwitya Adhi Pradyto Universitas Udayana
  • Made Agung Raharja Universitas Udayana

Abstract

Several diseases that can attack human health can be transmitted through disease vectors. One of the insects belonging to the disease vector is the mosquito. Diseases that can attack humans due  to  transmission  through  mosquitoes  include  malaria,  dengue  fever,  chikungunya,  yellow fever, rift valley fever, and many more. With so many types of diseases that are transmitted by mosquitoes  and  the  symptoms  that  look  quite  similar,  a  classification  process  is  carried  out  to distinguish  the  types  of  diseases.  In  this  study,  the  classification  was  carried  out  using  the Random Forest algorithm withthe LASSO algorithm for feature selection. It was found that the average accuracy values of the Random Forest before and  after  carrying  out feature selection using LASSO were 88% and 76%, respectively. From the values obtained, it can be concluded that  the  Random  Forest  has  better  performance  without  feature  selection  using  the  LASSO method.


Keywords: Classification, Random Forest, LASSO, Mosquito-Borne Diseases


 
Published
2023-07-29
How to Cite
PRADYTO, Kadek Dwitya Adhi; RAHARJA, Made Agung. Implementasi Random Forest dengan LASSO dalam Klasifikasi Penyakit yang Ditularkan Melalui Nyamuk. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 1, n. 4, p. 1197-1202, july 2023. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/102628>. Date accessed: 21 nov. 2024.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.