Implementasi Algoritma Support Vector Machine dalam Klasifikasi Deteksi Depresi dari Postingan pada Media Sosial
Abstract
Mental health issues, such as depression, have significant impacts on individuals and society. Early identification and detection of these conditions are crucial steps in providing appropriate interventions and supporting better recovery. With the increasing use of social media, many people have started sharing their thoughts, feelings, and experiences online. Social media provides an abundant platform for users to express themselves and interact with others. Posts on social media often reflect individuals' emotional states. Therefore, analyzing the content of these posts can provide valuable insights for monitoring and early detection of depressive symptoms. Machine learning has been widely used for automated text mining and classification tasks. A classification method that can be used to classify social media posts into depression and normal classes is the support vector machine. Based on the testing results of the Support Vector Machine algorithm in classifying posts on social media, the highest accuracy value obtained was 95.5% using a parameter value of C equal to 0.25. The Precision, recall, and F-1 score values were 96%.
Keywords: Mental healt issues, Depresion, Support Vector Machine, Classification
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.