Implementasi Algoritma KNN untuk Memprediksi Performa Siswa Sekolah
Abstract
One of the factors that influences students' graduation rates is their performance in learning. Predicting graduation rates based on student performance has the benefit of analyzing academically underperforming students and providing support to students who face difficulties in the learning process. There are several factors to consider in predicting students' graduation rates, such as academic grades, attitudes, and social factors. However, these factors alone are not sufficient to effectively predict students' performance, and educators also struggle to identify which factors affect students' performance.To predict the performance of school students, the K-Nearest Neighbor (KNN) method is utilized. The K-Nearest Neighbor method is often used in classifying students' performance due to its simplicity and ability to produce significant and competitive results. In this research, the prediction of students' graduation rates is carried out using the KNN method.The results of implementing the prediction of students' performance using the KNN method can serve as a reference for students to improve their achievements and assist educators in considering future teaching materials.
Keywords: KNN, K-Nearest Neighbor, Students Performance, Student
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.