Akurasi Klasifikasi Kualitas Wine Menggunakan Algoritma Random Forest Dengan Min-Max Normalization

  • Putu Putri Pratiwi Universitas Udayana
  • Ida Bagus Made Mahendra Universitas Udayana

Abstract

In this research, we will discuss the use of the Random Forest algorithm in classifying wine quality using Min-Max normalization. The data obtained will be subjected to data preprocessing and data normalization using Min-Max Normalization which is then applied to the Random Forest algorithm. This algorithm was chosen because it can provide good accuracy for the classification process. Data normalization and preprocessing are needed to produce a classification model with better accuracy. Min-Max normalization is used because it can improve the performance of the Random Forest algorithm in increasing accuracy.


Keywords: Random Forest, Min-Max Normalization, Accuracy

Published
2024-01-15
How to Cite
PRATIWI, Putu Putri; MAHENDRA, Ida Bagus Made. Akurasi Klasifikasi Kualitas Wine Menggunakan Algoritma Random Forest Dengan Min-Max Normalization. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 2, n. 2, p. 389-392, jan. 2024. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/102457>. Date accessed: 21 nov. 2024.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.