Klasifikasi Kategori Cerita Pendek Menggunakan Support Vector Machine
Abstract
Short stories are fascinating literary works to read because they present concise narratives that don't require readers to spend a lot of time to complete a story. Although the stories are short, determining the story category still requires careful reading to understand the content. However, it can become challenging when there is a large number of stories to be classified. Therefore, this research aims to develop a system that can automatically classify short story texts. The method used in this research is SVM (Support Vector Machine). The research is conducted to assist in automatically classifying short stories and create a system that bridges people to enjoying written works while enhancing literacy. The data used consists of short stories in the categories of romance, horror, and religion. The best-performing model is obtained through the training and validation process using new data. The results of testing the SVM method with a 70:30 data scenario, and hyperparameter C=10, gamma = 0.1 with kernel rbf or gamma = scale with kernel linear, yield an accuracy of 96% with a precision of 96.72%, recall of 96.36%, and an f1-score of 96.40%.
Keywords: Cerita Pendek, Teks Klasifikasi, TF-IDF, Support Vector Machine
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.