Analisis Performa Algoritma K-Nearest Neighbor dalam Klasifikasi Tingkat Kerontokan Rambut
Abstract
Hair loss can lead to baldness and affect one's self-confidence. Normally, hair falls out at 80-120 strands per day, and the average number of hair follicles on the head is around 100,000. If the amount is reduced by 50%, it can be considered a disorder. Therefore, a classification of hair loss levels is necessary to determine appropriate actions. Previous study has shown that the K-Nearest Neighbor algorithm is capable of classifying various diseases. In this study, the Luke Hair Loss Dataset from the website kaggle.com, consisting of 400 data points, was used. To evaluate the method's feasibility, a confusion matrix was employed. The objective of this research is to analyze the performance of the K-Nearest Neighbor algorithm. Several scenarios were utilized, including testing the model before and after SMOTE oversampling, testing before and after data normalization, testing based on different K values, and testing with varying ratios of training and testing data. The results of this study indicate that the K-Nearest Neighbor algorithm achieved the highest accuracy value of 0.9853, precision of 0.9886, recall of 0.9833, and f1-score of 0.9856.
Keywords: Hair Loss, Classification, K-Nearest Neighbor, Performance Test, Confusion Matrix
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.