Implementasi Random Forest Pada Klasifikasi Penyakit Kardiovaskular dengan Hyperparameter Tuning Grid Search

  • I Ketut Adian Jayaditya Universitas Udayana
  • I Gusti Agung Gede Arya Kadyanan Universitas Udayana

Abstract

Cardiovascular disease have the potential to cause death if not treated right, because it interferes with the function of the heart. Machine Learning algorithm can be used to do early diagnosis of cardiovascular disease to lower the risk of death. In this study, the classification of cardiovascular disease uses the Random Forest algorithm to determine whether a person has cardiovascular disease or not. Grid Search is also used to do hyperparameter tuning to find the optimal hyperparameter for the Random Forest algorithm. The performance results of the classification model using Random Forest with Grid Search are 73.06% in accuracy, 75.15% in precision, 68.72% in recall, and 71.79% in f1-score.


Keywords: Cardiovascular Disease, Random Forest, Hyperparameter Tuning, Grid Search

Published
2023-11-03
How to Cite
JAYADITYA, I Ketut Adian; KADYANAN, I Gusti Agung Gede Arya. Implementasi Random Forest Pada Klasifikasi Penyakit Kardiovaskular dengan Hyperparameter Tuning Grid Search. Jurnal Nasional Teknologi Informasi dan Aplikasnya, [S.l.], v. 2, n. 1, p. 219-226, nov. 2023. ISSN 3032-1948. Available at: <https://ojs.unud.ac.id/index.php/jnatia/article/view/102418>. Date accessed: 19 nov. 2024.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.