Implementasi Random Forest Pada Klasifikasi Penyakit Kardiovaskular dengan Hyperparameter Tuning Grid Search
Abstract
Cardiovascular disease have the potential to cause death if not treated right, because it interferes with the function of the heart. Machine Learning algorithm can be used to do early diagnosis of cardiovascular disease to lower the risk of death. In this study, the classification of cardiovascular disease uses the Random Forest algorithm to determine whether a person has cardiovascular disease or not. Grid Search is also used to do hyperparameter tuning to find the optimal hyperparameter for the Random Forest algorithm. The performance results of the classification model using Random Forest with Grid Search are 73.06% in accuracy, 75.15% in precision, 68.72% in recall, and 71.79% in f1-score.
Keywords: Cardiovascular Disease, Random Forest, Hyperparameter Tuning, Grid Search
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.