Klasifikasi Musik Berdasarkan Genre Menggunakan Metode K-Nearest Neighbor
Abstract
Currently the amount of music in digital form continues to increase rapidly. This causes manual genre labeling of music to be inefficient. Genre labeling can be done automatically using artificial intelligence algorithms. The artificial intelligence algorithm used is an algorithm that can classify music based on genre by using the features contained in the music. This study discusses the classification of music based on genre using the K-Nearest Neighbor method or algorithm and 6 musical features, namely beat, energy, danceability, loudness, liveness, and valence. The accuracy value in this study is 54.3%.
Keywords: Music clasification, music genre, k-nearest neighbor
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.