Implementasi Metode K-Nearest Neighbor Dalam Mengklasifikasikan Jenis Suara Berdasarkan Jangkauan Vokal

  • Ni Made Putri Wahyuni Informatika, Universitas Udayana
  • Luh Arida Ayu Rahning Putri Udayana University
  • I Gusti Ngurah Anom Cahyadi Putra Udayana University
  • Dewa Made Bayu Atmaja Darmawan Udayana University
  • Made Agung Raharja Udayana University
  • Agus Muliantara Udayana University

Abstract

Humans have voice characteristics with different vocal ranges, namely the male voice consists of Tenor, Baritone, and Bass, while the female voice consists of Soprano, Mezzosoprano, and Alto. Determining the voice range, especially for a singer, requires a vocal trainer or musical instrument that is quite difficult to access. Therefore, a sound classification system created based on vocal range using the Harmonic Product Spectrum (HPS) feature extraction method and the K-Nearest Neighbors (KNN) classification method uses k parameters from 1 to 40. The test gets the highest accuracy on parameter k=8, which is 88.88%, so that from the resulting accuracy to prove the K-Nearest Neighbor (KNN) method gives good results in classifying the type of voice.


Keywords: Classification, Vocal range, Harmonic Product Spectrum, K-Nearest Neighbors 

Downloads

Download data is not yet available.
Published
2022-07-20
How to Cite
WAHYUNI, Ni Made Putri et al. Implementasi Metode K-Nearest Neighbor Dalam Mengklasifikasikan Jenis Suara Berdasarkan Jangkauan Vokal. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), [S.l.], v. 11, n. 1, p. 187-194, july 2022. ISSN 2654-5101. Available at: <https://ojs.unud.ac.id/index.php/jlk/article/view/89310>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.24843/JLK.2022.v11.i01.p20.

Most read articles by the same author(s)