Klasifikasi Serangan Distributed Denial of Service (DDoS) Menggunakan Random Forest Dengan CFS

  • I Made Wasanta Bhaskara Prodi Informatika, MIPA, Universitas Udayana
  • I Putu Gede Hendra Suputra Prodi Informatika, MIPA, Universitas Udayana
  • I Made Widiartha Prodi Informatika, MIPA, Universitas Udayana
  • I Gusti Agung Gede Arya Kadyanan Prodi Informatika, MIPA, Universitas Udayana
  • I Gusti Ngurah Anom Cahyadi Putra Prodi Informatika, MIPA, Universitas Udayana
  • Ida Bagus Gede Dwidasmara Prodi Informatika, MIPA, Universitas Udayana

Abstract

Distributed Denial of Service (DDoS) attacks can have serious impacts on your organization and can cause enormous losses. This attack works by sending a computer or server an amount of requests that exceeds the capabilities of that computer. When classifying DDoS attacks in this study, feature selection is performed using correlation-based feature selection (CFS). The dataset used by the author in this study is CSE-CIC-IDS 2018. Feature selection on a dataset using CFS gets the results in the form of features related to the dataset. That is, a total of 31 features with a relationship score greater than 0.1. The average precision generated by the system using the random forest method and CFS function selection is 99.784%. Accuracy is the result of using the number of trees parameter with a value of 10. For a random forest model with no feature selection, the highest accuracy is 49.501%. This indicates that changing the random forest model parameters and selecting the CFS feature will affect high accuracy.

Downloads

Download data is not yet available.
Published
2022-07-08
How to Cite
BHASKARA, I Made Wasanta et al. Klasifikasi Serangan Distributed Denial of Service (DDoS) Menggunakan Random Forest Dengan CFS. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), [S.l.], v. 11, n. 2, p. 215-222, july 2022. ISSN 2654-5101. Available at: <https://ojs.unud.ac.id/index.php/jlk/article/view/87013>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.24843/JLK.2022.v11.i02.p01.