Rancang Bangun Engine Sentimen Analisis Tingkat Popularitas Kopi Berdasarkan Pengolahannya Menggunakan Teknologi Big Data

  • Ni Putu Nirmala Dewi Widhiasih Universitas Udayana
  • I Made Agus Dwi Suarjaya Universitas Udayana
  • Anak Agung Ketut Agung Cahyawan Wiranatha Universitas Udayana

Abstract

Demand for coffee products continues to increase along with population growth. The demand for a product is seen from the public's perception of the product. Community perceptions can be found through tweets on social media Twitter. This perception can be used to analyze sentiment towards a product. This approach is called Sentiment Analysis and to analyze it requires Big Data Technology. This study aims to design a Sentiment Engine Analysis of the Level of Popularity of Coffee Based on Processing Using Big Data Technology to find out the sentiments of people around the world towards processed coffee drinks through Twitter social media. This study uses the process of collecting tweet data from Twitter using the Twitter API, data processing, classification into positive, negative, and neutral sentiments using the Naïve Bayes method, as well as data visualization in graphical form. The data generated in this study amounted to 1,253,971 data in 1 year with 1800 training data and 450 test data. The evaluation results with the Naïve Bayes classification are 92.67% accuracy, 98.52% precision, 88.67% recall, and 93.33% f-measure.

References

[1] E. Panggabean, Buku Pintar Kopi. Jakarta Selatan: PT AgroMedia Pustaka, 2019.
[2] D. H. & A. A. Sastra, A to Z Memulai dan Mengelola Usaha Kedai Kopi. Jakarta Selatan: AgroMedia Pustaka, 2020.
[3] I. Nuritha, A. A. Arifiyanti, and V. P. Widartha, “Analysis of Public Perception on Organic Coffee through Text Mining Approach using Naïve Bayes Classifier,” Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, pp. 153–158, 2018, doi: 10.1109/EIConCIT.2018.8878572.
[4] N. Qomariah, “Sentiment Analysis on Coffee Consumer Perceptions on Social Media Twitter Using Multinomial Naïve Bayes,” J. Intell. Comput. Heal. …, vol. 2, no. 1, 2021, [Online]. Available: https://jurnal.unimus.ac.id/index.php/ICHI/article/view/7241.
[5] E. M. Sipayung, H. Maharani, and I. Zefanya, “Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier,” J. Sist. Inf. UNSRI, vol. 8, no. 1, pp. 958–965, 2016.
[6] F. Nurhuda, S. Widya Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,” J. Teknol. Inf. ITSmart, vol. 2, no. 2, p. 35, 2016, doi: 10.20961/its.v2i2.630.
[7] D. Kurniawan, Pengenalan Machine Learning dengan Python. Jakarta: PT Elex Media Komputindo, 2020.
Published
2023-01-15
How to Cite
WIDHIASIH, Ni Putu Nirmala Dewi; SUARJAYA, I Made Agus Dwi; WIRANATHA, Anak Agung Ketut Agung Cahyawan. Rancang Bangun Engine Sentimen Analisis Tingkat Popularitas Kopi Berdasarkan Pengolahannya Menggunakan Teknologi Big Data. JITTER : Jurnal Ilmiah Teknologi dan Komputer, [S.l.], v. 4, n. 1, p. 1357-1566, jan. 2023. ISSN 2747-1233. Available at: <https://ojs.unud.ac.id/index.php/jitter/article/view/96758>. Date accessed: 22 nov. 2024. doi: https://doi.org/10.24843/JTRTI.2023.v04.i01.p01.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.