Komposit PLA (Poly Lactic Acid) untuk aplikasi biomaterial scaffold mampu terdegradasi
Abstract
Penggunaan alat Kesehatan atau biomaterial diindonesia mengalami peningkatan. Material untuk alat kesehatan dapat disebut dengan biomaterial suatu disiplin ilmu Teknik Material dan Metalurgi. Biomaterial mencakup ilmu kedokteran, ilmu dasar (biologi, kimia dan fisika) dan ilmu teknik (mesin, elektro dan material). Biomaterial dapat diartikan suatu material untuk membuat berbagai alat kesehatan dan berinteraksi dengan sistim biologi. Biomaterial banyak digunakan sebagai implan dan devices (surgical implants and devices) untuk memperbaiki (to repair), mengganti (to replace), mendukung (to support) dan atau mengembalikan (to restore) fungsi organ tubuh secara aman. Biomaterial dapat berupa implan permanen atau implan sementara berupa scaffold. Biomaterial pengganti (scaffold) bagi sel atau jaringan di sekitarnya untuk merangsang, tumbuh, dan membimbing regenerasi jaringan baru. Setelah perbaikan dan penyembuhan jaringan selesai kemudian scaffold terdegradasi in vivo secara klinis dan biomekanik, sehingga tidak memerlukan operasi kedua untuk pengangkatan, biomaterial biodegradable harus mendukung proses regenerasi dan perbaikan jaringan dengan dukungan mekanis dan tidak beracun. PLA merupakan biopolimer yang sering digunakan sebagai biomaterial selain dari sifat biodegradable dan biocompatible karena propertiesnya yang baik digunakan sebagai scaffold. Penggunaan PLA atau biokomposit PLA banyak diaplikasikan sebagai bahan pengganti sementara atau scaffold pada tissue engineering seperti skin, tendon, ligamen, cartilage, arteri, aorta dan lain-lain. Perkembangan teknologi dibidang disipilin ilmu teknik metalurgi, fisika-kimia, biologi dan medis. Penggunaan polimer khususnya PLA dan biokompositnya telah berkembang dibidang tissue engineering dan alat kesehatan, untuk implan hard tissue masih dalam proses pengembangan. Paper review penelitian bertujuan untuk memudahkan, mengembangkan dan memulai penelitian baru dan review hasil penelitian untuk dijadikan acuan sebagai bahan penelitian selanjutnya agar lebih baik.
Downloads
References
[2] CNBC Indonesia. (2021). Impor Alat Kesehatan. CNBC Television broadcast. Jakarta, Profit CNBC Indonesia
[3] Mahyudin, F., and Hermawan, H. (2016). Biomaterials and Medical Devices: A Perspective from an Emerging Country. Heidelberg: Springer
[4] Ratner, B.D., et al., (2004). Biomaterial Science, 2nd Edition, Elsevier Academic Press, San Diego, California, USA
[5] Williams, D.F. (1987). Definitions in Biomaterials. Progress in Biomedical Engineering. Amsterdam : Elsevier
[6] Park, J.B., and Lakes, R.S. (2007). Biomaterials: An Introduction. 3rd ed. Heidelberg: Springer
[7] Schaschke, C., and Audic, J.L. (2014). Editorial: Biodegradable materials. Int. J. Mol. Sci. 15, 21468–21475
[8] Tevlin, R., McArdle, A., Atashroo, D., Walmsley, G.G., Senarath-Yapa, K., Zielins, E.R., Paik, K.J., Longaker, M.T., and Wan, D.C. (2014). Biomaterials for Craniofacial Bone Engineering. J. Dent. Res. 93. 1187–1195
[9] Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., and Glogauer, M. (2015). Biodegradable Materials for Bone Repair and Tissue Engineering Applications : A Review. Open Access Materials. 8. 5744-5794. doi:10.3390/ma8095273
[10] Dai, W., Kawazoe, N., Lin, X., Dong, J. and Chen, G. (2010). The Influence of Structural Design of PLGA/Collagen Hybrid Scaffolds in Cartilage Tissue Engineering Polymers”. Biomaterials 31. PP. 2141–2152
[11] Auras, R., Lim, L.T., Selke, M. and Tsuji, H. (2010). Poly (LA): Synthesis, Structures, Properties, Processing, and Application. Hoboken NJ: John Wiley & Sons Inc
[12] Singhvi, M., and Gokhale, D. (2013). Biomass to Biodegradable Polymer (PLA). RSC Adv 3. PP. 13558–13568
[13] Auras, R., Harte, B., and Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromol Biosci 4. PP. 835–864
[14] Jamshidian, M., Arab-Tehrany, E., Imran, M., Jacquot, M., and Desobry, S. (2010). Compr. Rev. Food Sci. Food Saf. 9.PP. 552–571
[15] Garlotta, D.J. (2002). Polymer Environ. PP. 63–84
[16] Van de Velde. K.P. (2002). Kiekens, Polymer Studies Test. 21. PP. 433–442
[17] Sitompul, J., Insyani, R., Prasetyo, D., Prajitno, H., dan Lee, H.W., (2014). Sifat Polimer dan Kemampuan Terbiodegradasi Blend Biodegradable Polymer Poli(L-Asam Laktat) (PLLA), Reaktor, 15(2), 79- 86, http://dx.doi.org/ 10.14710/reaktor.15.2.79-86
[18] Battegazzore, D., Alongi, J., and Frache A. (2014). Poly(lactic acid)-Based Composites Containing Natural Fillers: Thermal, Mechanical and Barrier Properties. Springer Science. J Polym Environ 22:88–98
[19] Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., and Takeishi, H. (2003). Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters. Macromol. Mater. Eng. 288, 35–43. Chiba Institute of Technology
[20] Ye, C., Ma, G., Fu, W., and Wu, H. (2015). Effect of Fiber Treatment on Thermal Properties and Crystallization of Sisal Fiber Reinforced Polylactide Composites. SAGE : Journal of Reinforced Plastics and Composites. Vol. 34(9) 718–730
[21] Harmaen, A.S., Khalina, A., Faizal, A.R., and Jawaid, M. (2013): Effect of Triacetin on Tensile Properties of Oil Palm Empty Fruit Bunch Fiber-Reinforced Polylactic Acid Composites. Polymer-Plastics Technology and Engineering, 52 : 400–406
[22] Turnip, N.J.R., Lee, H.W., Sitompul, J.P., and Paramitha, T. (2017). Characteristic Study of Biocomposite Film Poly Lactic Acid (PLA) and Cellulose From Oil Palm Empty Fruit Bunch (OPEFB). ResearchGate. International Seminar on Chemical Engineering. In conjunction with Seminar Soehadi Reksowardojo (STKSR)
[23] Ibrahim, N.A., Yunus, W.M.Z.W., Othman, M., and Abdan, K. (2011). Effect Of Chemical Surface Treatment on the Mechanical Properties of Reinforced Plasticized Poly(Lactic Acid) Biodegradable Composites. SAGE : Journal of Reinforced Plastics & Composites. 30(5) 381-388
[24] Garcia, M.D.S., and Lagaron. J. M. (2010). On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid. Springer. Novel Materials and Nanotechnology Group. Cellulose 17:987–1004. DOI 10.1007/s10570-010-9430
[25] Paramitha, T., and Sitompul, J. P. (2020). Characterization of Biocomposites From Polylactic Acid and Cellulose of Oil Palm Empty Fruit Bunch. JKPK. Vol. 5. No. 3. Chemistry Education Study Program, UNS. https://jurnal.uns.ac.id/jkpk
[26] Indrayani, Y., Suryanegara, L., Sagiman, S., Roslinda, E., and Marwanto. (2019). Short Communication: Biodegradable of Bio-Composites Made From Polylactid Acid (PLA) and Cellulose Fibers From Oil Palm Empty Fruit Bunch. BioScience. Vol. 11. No. 1, pp. 8-11. DOI: 10.13057/nusbiosci/n110102
[27] Wan Rosli, W.D., Haafiz, M., Kassim, M., and Seeni, Azman. (2011). Cullulosa Phosphate From Oil Palm Biomass as Potential Biomaterials. BioResources 6(2).1719-1740.
[28] Cheng, T.S., Uy Lan, D.N., Phillips, S., and Tran, L.Q.N. (2018). Characteristics of Oil Palm Empty Fruit Bunch Fiber and Mechanical Properties of Its Unidirectional Composites. Singapore Institute of Manufacturing Technology (SIMTech) :DOI 10.1002/pc.24824
[29] James, R., Kumbar, S.G., Laurencin, C.T., Balian, G.,and Chhabra, A.B. (2011). Tendon Tissue Engineering: Adipose-Derived Stem Cell and GDF-5 Mediated Regeneration Using Electrospun Matrix Systems. Biomed. Mater. 6. 025011
[30] Yee, Y.Y., Ching, Y.C., Rozali, S., Hashim, N.A., and Singh, R. (2016). Preparation and Characterization of Poly(Lactic Acid) Based Composite Reinforced with Oil Palm Empty Fruit Bunch Fiber (OPEFB) and Nanosilica. BioResources 11(1). 2269-2268
[31] Beg, M.D.H., Akindoyo, J.O., Ghazali, S., and Mamun, A.A. (2015). Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite. World Academy of Science. Engineering and Technology International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering. Vol:9. No:1
[32] Lakin, I.I., Abbas, Z., Azis, R.S., Ibrahim, N.A., and Rahman, N.A.A. (2020). The Effect of MWCNTs Filler on the Absorbing Properties of OPEFB/PLA Composites Using Microstrip Line at Microwave Frequency. Mdpi. Jounal. Material. 13. 4581. doi:10.3390/ma13204581
[33] Ibrahim, N.A., Yunus, W.M.Z.W., Othman, M., and Abdan, K. (2011). Effect Of Chemical Surface Treatment on the Mechanical Properties of Reinforced Plasticized Poly(Lactic Acid) Biodegradable Composites. SAGE : Journal of Reinforced Plastics & Composites. 30(5) 381-388
[34] Rayung, M., Ibrahim, N.A., Zainudin, M., Saad, W.Z., Razak, N.I.A., and Chieng, B.W. (2014). The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites. International Journal of Molecular Sciences ISSN 1422-0067. Int. J. Mol. Sci. 15. 14728-14742
[35] Gupta, B., Revagade, N. and Hilborn, J. (2007). Poly(LA) fiber: an overview. Prog Polym Sci 34. PP. 455–482
[36] Jenkins, M. (2007). Biomedical Polymers. Cambridge: Woodhead Publishing
[37] Ambrosio, L. (2009). Biomedical Composites. Cambridge: Woodhead Publishing
[38] Narayanan, G., Vernekar, V.N., Kuyinu, E.L., and Laurencin, C.T. (2016). Poly (lactic acid)-Based Biomaterials for Orthopedic Regenerative Engineering. Elsevier: Advanced Drug Delivery Reviews. http://dx.doi.org/10.1016/j.addr.2016.04.015
[39] Middleton, J.C. and Tipton, A.J. (2000). Synthetic Biodegradable Polymers as Orthopedic Devices. Elsvier: Biomaterials 21.2335–2346
[40] Nair, L.S. and C.T. Laurencin. (2007). Biodegradable Polymers as Biomaterials. Progress in Polymer Science. 32(8-9): p. 762-798
[41] Sahoo, S., Toh, S.L. and Goh, J.C.H. (2010). A Bfgf-Releasing Silk/PLGA-Based Biohybrid Scaffold for Ligament/Tendon Tissue Engineering Using Mesenchymal Progenitor Cells. Biomaterials. 31(11): p. 2990-2998
[42] Araque, M.M.C., Vidaurre, A., Gil S.L., Gironés B.S., Monleón P.M., and Más E.J. (2013). Study of Degradation of a New PLA Braided Biomaterial in Buffer Phosphate Saline, Basic and Acid Media, Intended for the Regeneration of Tendons and Ligaments. Polymer Degradation and Stability. 98(9):1563-1570. doi:10.1016/j.polymdegradstab.2013.06.031
[43] Yan, Z., Meng, X., Su, Y., Chen, Y., Zhang, L., and Xiao, Z. (2021). Double layer composite membrane for preventing tendon adhesion and promoting tendon healing. Elsevier. Material and Engineering C 123. 111941. https://doi.org/10.1016/j.msec.2021.111941
[44] Gao, C., Meng, L., Yu, L., Simon, G.P., Liu, H. and Chen, L. (2015). Preparation and Characterization of Uniaxial Poly(Lactic Acid)-Based Self-Reinforced Composites. Elsevier : Science Direct Composites Science and Technology. Vol. 117. Pages 392-39
[45] Haafiz, M.K.M., Hassan, A., Khalil, H.A., Imran, K., Inuwa, I.M., Islam, M.S.,Hosain, S., Syakir M.I., and Fazita, N. (2016). Bionanocomposite Based on Cellulose Nanowhisker From Oil Palm Biomass-Filled PLA Elsvier. Polymer Testing.http://dx.doi.org/10.1016/j.polymertesting.2015.10.003
[46] Garcia, M.D.S., and Lagaron. J. M. (2010). On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid. Springer. Novel Materials and Nanotechnology Group. Cellulose 17:987–1004. DOI 10.1007/s10570-010-9430
[47] Uysal, C.A., Tobita, M., Hyakusoku, H., and Mizuno, H. (2012). Adipose-Derived Stem Cells Enhance Primary Tendon Repair: Biomechanical and Immunohistochemical Evaluation. J Plast Reconstr Aesthet Surg.
[48] Chen, C.H., Chang, C.H., Wang, K.C., Su, C.I., Liu, H.T., Yu, C.M., Wong, C.B., Wang, I.C., Whu, S.W., and Liu, H.W. (2011). Enhancement of Rotator Cuff Tendon-Bone Healing With Injectable Periosteum Progenitor Cells-BMP-2 Hydrogel In Vivo. Knee Surg Sports Traumatol Arthrosc. 19. 1597
[49] Chen, B., Wang, B., Zhang, W.J., Zhou, G., Cao, Y., and Liu, W. (2012). In Vivo Tendon Engineering With Skeletal Muscle Derived Cells in a Mouse Model. Biomaterials. 33. 6086
[50] Kaux, J.F., Janssen, L., Drion, P., Nusgens, B., Libertiaux, V., Pascon, F., Heyeres, A., Hoffmann, A., Lambert, C., Le Goff, C., Denoel, V., Defraigne, J.O., Rickert, M., Crielaard, J.M., and Colige. (2014). A. Vascular Endothelial Growth Factor-111 (VEGF-111) and Tendon Healing: Preliminary Results in a Rat Model Of Tendon Injury. Muscles Ligaments Tendons
[51] Longo, U.G., Ronga, M., and Maffulli, N. (2018). Sports Medical. Arthrosc. Rev. 26. 1
[52] No, Y.J., Castilho, M., Ramaswamy, Y., and Zreiqat, H. (2019). Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. Progress Report. Adv. Materials. DOI: 10.1002/adma.201904511
[53] Jia, Z., Xue, C., Wang, W., Liu, T., Huang, X., Xu, W. (2017). Medicine. 96. e6568
[54] Yan, R., Gu, Y., Ran, J., Hu, Y., Zheng, Z., and Zeng, M. (2017). Intratendon Delivery of Leukocyte-Poor Platelet-Rich Plasma Improves Healing Compared with Leukocyte-Rich Platelet-Rich Plasma in a Rabbit Achilles Tendinopathy Model. Am J Sports Med. 45:1909–20
[55] Birch, H.L. (2007). Tendon Matrix Composition and Turnover in Relation to Functional Requirements. Int. J. Exp. Path. 88. 241–248. doi: 10.1111/j.1365-2613.2007.00552.x
[56] Lichtwark, G.A., and Wilson, A.M. (2005). In vivo mechanical properties of the human Achilles tendon during one-legged hopping. The Journal of Experimental Biology. 208. 4715-4725. Company of Biologists. doi:10.1242/jeb.01950
[57] Kreuz, P.C., Müller, S., Ossendorf, C., Kaps, C., and Erggelet, C. (2009). Treatment of Focal Degenerative Cartilage Defect with Polimer Based Autologous Chondrocyte Grafts : Four Year Clinical Result . Arthritis Res. Ther . 11.R33-R
[58] Walden, G., Liao, X., Donell, S., Raxworthy, M., Riley, G., and Saeed, A. (2016). A Clinical, Biological and Biomaterials Perspective Into Tendon Injuries and Regeneration. Tissue Engineering. Mary Ann Liebert, Inc. DOI: 10.1089/ten.TEB.2016.0181
[59] Hermawan, et al. (2010). Development of Metal Biodegradable Stent, Acta Biomaterial 6:1693–1697
[60] Witte, F. (2010). The History of Biodegradable Magnesium Implants: A Review. Acta Biomaterial. Vol. 6. Ed. 16, hal. 80–92
[61] Kokubo, T. (2008). Bioceramics Clinical Applications. Cambridge: Woodhead Publishing
[62] Zeng, R.C., Dietzel, W., Witte, F., Hort, and Blawert, C. (2008). Advanced Basic of Engineering Materials. Hal. 10 B3
[63] Gupta, B., Revagade, N. and Hilborn, J. (2007). Poly(LA) fiber: an overview. Prog Polym Sci 34. PP. 455–482.
[64] Ambrosio, L. (2009). Biomedical Composites. Cambridge: Woodhead Publishing
[65] Fisher, J.P., Mikos, A.G., and Bronzino, J.D. (2007). Tissue Enginering and Artificial Organs. CRC Press: Taylor and Francis group
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.