Pengaruh Kecepatan Nozel terhadap Kekasaran Permukaan Produk 3D Printing Berbentuk Kurva
Abstract
Additive Manufacturing (AM) adalah proses menambahkan material untuk membentuk suatu objek. Proses pembentukan tersebut dikenal sebagai 3D printing, yang memungkinkan untuk menciptakan suatu model atau prototipe yang lebih kompleks menjadi lebih mudah. Penelitian ini membahas mengenai pengaruh parameter kecepatan gerak nozel terhadap ketelitian dimensi dan kekasaran permukaan produk hasil cetak mesin 3D printer berbentuk kurva. Model didesain dalam bentuk kurva agar efek tangga (staircase effect) dapat terlihat dengan jelas, sehingga dapat dibandingkan perubahannya pada setiap kecepatan nozel yang berbeda. Benda yang sudah didesain pada perangkat lunak Catia kemudian diatur beberapa parameternya untuk pencetakan dengan perangkat lunak pengiris yaitu Ultimaker Cura (versi 4.8.0). Perbedaan parameter kecepatan dan penambahan support (pendukung) diatur pada perangkat lunak ini. Kemudian hasil kostumisasi tersebut akan disimpan dalam format GCode File. Parameter kecepatan yang diuji dalam penelitian ini 30mm/detik, 40 mm/detik, 50 mm/detik, 60 mm/detik, dan 70 mm/detik. Masing-masing GCode File dengan kecepatan yang berbeda akan dicetak sebanyak 5 kali. Setiap cetakan akan mempunyai hasil yang berbeda. Oleh karena itu, dilakukan pengukuran ketelitian dimensi dan kekasaran permukaan produk 3D printing agar didapatkan parameter kecepatan terbaik sebagai acuan referensi pencetakan prototipe suatu benda berbentuk kurva pada mesin 3D Printer FDM.
Downloads
References
[2] S. Cahyati, “A Prototyping of Additive Manufacturing Cell in Cyber Physical System for Maintenance 4 . 0 Preparation,” vol. 29, no. 05, pp. 575–584, 2020.
[3] S. Cahyati, B. Satriawan, J. Teknik, M. Fakultas, T. Industri, and U. Trisakti, “Ketelitian Dimensi Produk Hasil Proses Modifikasi Mesin Fdm Dual Extruder,” Semin. Nas. Pakar ke 2, pp. 1–7, 2019.
[4] S. Cahyati and D. P. Mulianto, “Redesain Meja Cetakan Mesin 3D Printer Berbasis Fused Deposition Modelling,” J. Energi Dan Manufaktur, vol. 12, no. 2, p. 99, 2019, doi: 10.24843/jem.2019.v12.i02.p09.
[5] J. Anggono, W. Budiman, and K. V. Philbert, "Accuracy In Fused Deposition Modelling: A Comparative Study on Parts Making Using," no. February, pp. 69–76, 2020.
[6] M. S. Alsoufi and A. E. Elsayed, “Surface Roughness Quality and Dimensional Accuracy — A Comprehensive Analysis of 100 % Infill Printed Parts Fabricated by a Personal / Desktop Cost-Effective FDM 3D Printer,” pp. 11–40, 2018, doi: 10.4236/msa.2018.91002.
[7] S. Khabia and K. K. Jain, “Influence of Change in Layer Thickness on Mechanical Properties of Components 3D Printed on Zortrax M 200 FDM printer with Z-ABS Filament Material & Accucraft i250+ FDM Printer with Low Cost ABS Filament Material,” Mater. Today Proc., vol. 26, no. xxxx, pp. 1315–1322, 2019, doi: 10.1016/j.matpr.2020.02.268.
[8] E. Of, I. Pattern, I. Density, A. On, and T. H. E. Printing,"Angle on the Printing Time and Filament of Length of 3D," no. February, pp. 145–152, 2021.
[9] O. Abdulhameed, A. Al-Ahmari, W. Ameen, and S. H. Mian, “Additive Manufacturing: Challenges, Trends, and Applications,” Adv. Mech. Eng., vol. 11, no. 2, pp. 1–27, 2019, doi: 10.1177/1687814018822880.
[10] N. Ayrilmis, “Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced From Wood Flour/PLA Filament,” Polym. Test., vol. 71, no. September, pp. 163–166, 2018, doi: 10.1016/j.polymertesting.2018.09.009.
[11] M. Badola, "Parameters Affecting Surface Roughness of Fused Deposition Modelling" no. January 2016, 2019, doi: 10.26634/jme.6.1.3739.
[12] P. Mercedes, G. Medina-s, and D. Carou, “Surface Quality Enhancement of Fused Deposition Modeling ( FDM ) Printed Samples Based on the Selection of Critical Printing Parameters,” doi: 10.3390/ma11081382.
[13] O. Luzanin, D. Movrin, and M. Plancak, "Experimental Investigation of Extrusion Speed and Temperature Effects on Arithmetic Mean Surface Roughness in FDM" no. April, 2013.
[14] F. Wasserfall, N. Hendrich, D. Ahlers, and J. Zhang, “Topology-Aware Routing of 3D-Printed Circuits,” Addit. Manuf., p. 101523, 2020, doi: 10.1016/j.addma.2020.101523.
[15] R. Roy and A. Mukhopadhyay, “Tribological Studies of 3D Printed ABS and PLA Plastic Parts,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.09.235.
[16] B. N. Turner and S. A. Gold, “A Review of Melt Extrusion Additive Manufacturing Processes : II . Materials , Dimensional Accuracy , and Surface Roughness,” vol. 3, no. February 2013, pp. 250–261, 2015, doi: 10.1108/RPJ-02-2013-0017.
[17] W. P. Syam, “Metrologi Manufaktur Pengukuran Geometri dan Analisis Ketidakpastian.”
[18] X. Meng, L. Shi, L. Yao, Y. Zhang, and L. Cui, “ur na l P re of,” Colloids Surfaces A Physicochem. Eng. Asp., no. Iii, p. 124658, 2020, doi: 10.1016/j.compositesb.2020.108474.
[19] N. Zhang, L. Zhang, Y. Chen, and Y. Shi, “Computer-Aided Design Local Barycenter Based Efficient Tree-Support Generation for 3D,” Comput. Des., vol. 115, pp. 277–292, 2019, doi: 10.1016/j.cad.2019.06.004.
[20] L. Zhu, R. Feng, X. Li, J. Xi, and X. Wei, “Design of Lightweight Tree-Shaped Internal Support Structures for 3D Printed Shell Models,” no. September, 2019, doi: 10.1108/RPJ-04-2019-0108.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.