A Analisis Pendapatan Rumah Tangga Usaha Pertanian di Provinsi Sumatera Barat
Abstract
This study aims to determine the determinants of the variation in household income that seeks in the agricultural sector. The statistical method used to examine it is Log-logistic regression model of three parameters with estimation method using Bayesian method. Based on the model, it can be seen that the characteristics of household of agricultural business (RTUP) of West Sumatera which have positive correlation to household income are percentage of productive age farmer, percentage of farmers who are educated above junior high, percentage of male farmer, area of ??residence, land use, sources of financing, grants, saprodi access, counseling, farmer groups, cooperative utilization and marketing of agricultural products. Among all these factors, which contributed the most in increasing the income of the RTUP in West Sumatera were the percentage of productive farmers, the area where the farmer lived, the provision of access to saprodi and the utilization of the cooperative.
Downloads
References
Casella, G. dan George, E.I. (1992). Explaining the Gibbs Sampler. Journal of the American Statistical Association, 46(3), hal. 167-174.
Congdon, P.D. (2006). Bayesian Statistical Modelling. 2nd edition. England: John Wiley & Sons.
Dahar, D. (2016). Faktor-faktor yang mempengaruhi pendapatan nelayan di Desa Pohuwato Timur Kecamatan Marisa Kabupaten Pohuwato. Jurnal Agropolitan, 3(3), November, 9-12.
Dey, A.K., dan Kundu, D. (2009). Discriminating Between The Log Normal and Log Logistic Distributions. Communications in Statistics-Theory and Methods, 39(2), hal. 280-292.
Johnson, N.L., Kotz, S., dan Balakrishnan, N. (1995). Continues Univariate Distributions. 2nd edition: John Wiley and Sons, New York.
Gelman, A., Carlin, J B., Stern, H. S. dan Rubin, D. B. (2004). Bayesian Data Analysis. 2nd edition. Florida: Chapman & Hall.
Gelman, A., dan Pardoe, L. (2006). Bayesian Measure of Explained Variance and Pooling in Multilevel (Hierarchical) Models, Technometrics, 48(2), hal. 241-251.
Lehman, E.L., dan Romano, J.P. (2005), Testing Statistical Hypotheses. 3rd Edition. New York: Springer.
Minitab Inc. (2006). Minitab Methods and Formulas: Parametric Distributions. Minitab Statistical Software, Release 15 for Windows. Pennsylvania: State College.
Masmulyadi dan Widodo, S. (2014). Analisis Pendapatan Nelayan Bagan Perahu di Kabupaten Kepulauan Selayar, Jurnal Agro Ekonomi, 25(2), Desember, 150-159.
Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS. New Jersey, USA: Wiley.
Sukirno, Sadono. (1995). Pengantar Teori Ekonomi Mikro. Edisi kedua. Jakarta: PT.Karya Grafindo Persada.
Sumodiningrat G. (1999). Pemberdayaan masyarakat dan JPS. Jakarta (ID): Gramedia Pustaka Utama.
Soekartawi. (1999). Agribisnis Teori dan aplikasinya. Jakarta: Universitas Indonesia.
Suyadi, Sumardjo, Uchrowi, Z., Tjitropranoto, P., Swastika, D. K. S., (2018), Status dan Determinan Pendapatan Petani Agroforestri di Lingkungan Taman Nasional Gunung Cermai, Jurnal Agro Ekonomi, Vol. 36 No. 1, Mei 2018,71-89 DOI: http://dx.doi.org/10.21082/jae.v36n1.2018.71-89.
Susilowati, S.H., (2017), Dinamika Diversifikasi Sumber Pendapatan Rumah Tangga di Berbagai Agroekosistem, Jurnal Agro Ekonomi, Vol. 35 No. 2, Oktober 2017:105-126 DOI: http://dx.doi.org/10.21082/jae.v35n2.2017.105-126.
Wackerly, D.D., Mendenhall, W., dan Scheaffer, R.L. (1996). Mathematical Statistics with Applications. California: Duxbury Press.
Yudohusodo, S. 1992. Arsitektur Pertamanan dalam Tata Ruang Perkotaan. Prosiding Seminar Pertanian Perkotaan. Universitas Muhamadiyah. Jakarta.