Analysis of Sales Forecasting on Galah Kopi Using the Fuzzy Time Series Method
Abstract
Galah Kopi is one of the coffee shops in Tabanan. Addressed at Jl. Raya Babadan Senganan No. 13, Penebel District, Tabanan Regency. Galah Kopi's sales only use previous sales data as a benchmark without the aid of calculations using a more accurate scientific method. The coffee shop also experienced erratic sales problems. The solution that can be used is to do forecasting. This study uses the Fuzzy Time Series method for sales forecasting. The results of this study show that the model method has an accuracy value where the results of the coffee category with an MSE value of 901,917, MAE 27,715 and MAPE 6,115, the Chen model with an MSE value of 4939,505, MAE 57,952 and MAPE 12,574. Fuzzy time series model Singh in the non-coffee category with MSE values ??of 3249.019, MAE 50.177 and MAPE 6.96, with the Chen model with MSE values ??of 23536.2, MAE 125.904 and MAPE 19.00. Fuzzy time series model Singh for the Food category with MSE values ??of 1286.453, MAE 32.187 and MAPE 8.211, with the Chen model with MSE values ??of 14175.61, MAE 98.273 and MAPE 103.45. Fuzzy Time Series Singh model in snack category with MSE value of 1285.114, MAE 30.845 and MAPE 41.967, with the Chen model with MSE value of 14175.61, MAE 98.273 and MAPE 103.45. So that the model method that has the smallest accuracy is the fuzzy time series Singh
Downloads
References
[2] S. S. Beruru and E. Sediyono, “Peramalan Penjualan Dengan Metode Fuzzy Time Series Haneen Talal Jasim,” in Seminar Nasional Sains dan Aplikasi Komputasi (SENSAKOM), 2013, pp. 43–48.
[3] A. Latifudin, D. Suryani, and R. Wakhidah, “Peramalan Jumlah Pengunjung Wisatawan Mancanegara Menggunakan Metode Fuzzy Time Series Di Jawa Timur,” J. Inform. Polinema, vol. 8, no. 2, pp. 43–48, 2022, doi: 10.33795/jip.v8i2.525.
[4] Fendi Nurcahyono, “Pembangunan Aplikasi Penjualan Dan Stok Barang Pada Toko Nuansa Elektronik Pacitan,” J. Speed - Sentra Penelit. Eng. dan Edukasi, vol. 4, no. 3, pp. 15–19, 2012.
[5] M. Nor Hayati and dan Sri Wahyuningsih, “Peramalan Menggunakan Metode Fuzzy Time Series Cheng Forecasting Using Fuzzy Time Series Cheng Method,” J. EKSPONENSIAL, vol. 8, no. 1, pp. 51–56, 2017.
[6] S. Sari and D. Jannati, “Analisis Perancangan Kebutuhan Kopi Best Seller Untuk Memenuhi Permintaan Di Cafe Kopi Titik Dengan Menggunakan Metode Peramalan,” Bina Tek., vol. 17, no. 1, p. 9, 2021, doi: 10.54378/bt.v17i1.2729.
[7] M. R. Kurniawan, J. Dedy Irawan, and F. Santi Wahyuni, “Forecasting Penjualan Kopi Dengan Metode Exponential Smoothing Berbasis Web (Studi Kasus Kedai Psycoffee),” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 517–525, 2021, doi: 10.36040/jati.v5i2.3739.
[8] N. Hafiyya, F. Virgantari, and M. Widyastiti, “Implementasi Metode Fuzzy Time Series Pada Peramalan Harga Emas Di Indonesia,” INTERVAL J. Ilm. Mat., vol. 2, no. 2, pp. 94–103, 2022, [Online]. Available: https://harga-emas.org/.
[9] C. P. Yanti, N. L. W. S. R. Ginantra, D. A. P. Wulandari, and N. P. A. I. Paramita, “Komparasi Metode Single Moving Average dan Double Exponential Smoothing untuk Peramalan Penjualan Produk Gerabah pada UD. Amerta Sedana,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 3. p. 536, 2022, doi: 10.30865/jurikom.v9i3.4143.
[10] D. A. Fyanda, M. Ula, and A. Asrianda, “Implementasi Fuzzy Time Series Pada Peramalan Penjualan Tabung Gas Lpg Di Ud. Samudera Lpg Lhokseumawe,” Sisfo J. Ilm. Sist. Inf., vol. 1, no. 1, pp. 1–25, 2017, doi: 10.29103/sisfo.v1i1.249.
[11] F. Rachim, T. Tarno, and S. Sugito, “Perbandingan Fuzzy Time Series Dengan Metode Chen Dan Metode S. R. Singh (Studi Kasus : Nilai Impor di Jawa Tengah Periode Januari 2014 – Desember 2019),” J. Gaussian, vol. 9, no. 3, pp. 306–315, 2020, doi: 10.14710/j.gauss.v9i3.28912.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.