EFEK BIOLARVISIDA EKSTRAK ETANOL BUAH CITRUS HYSTRIX TERHADAP LARVA AEDES AEGYPTI

  • I Gusti Ngurah Ananda Wira Kusuma KIHFKUNUD

Abstrak

Introduction: Dengue infection is a high-incidence-mosquito-vectored disease that causes various clinical conditions ranging from mild to severe. Eradicating Ae. aegypti mosquito larvae is a common strategy to prevent the spread of dengue infection. This study aims to explore the biolarvicide effect of the ethanol extract of Citrus hystrix fruit on Ae. aegypti larvae.


Method: The study was conducted using a bioassay with Ae. aegypti larvae in instars III and IV as samples. The test was divided into 7 groups, namely the control group and the treatment groups at concentrations of 400, 800, 1200, 1600, 2000, and 2400 ppm, each group consisting of 20 larvae, then observed at 1, 24, and 48 hours. Larval mortality was recorded, and data were analyzed to determine the biolarvicide effect, LC50 and LC95 values, and dose-effect relationships.


Result: A total of 590 larvae were tested, total mortality was 315 and 418 after 24 and 48 hours, respectively. The one-way ANOVA test resulted in F values of 26.03 and 65.69 (p<0.05) in the periods of 24 and 48 hours, respectively. The R2 values were 0.745 and 0.635 at 24 and 48-hour periods, respectively (p<0.05). The values of LC50 for 24 hours are 989.55 ppm and LC95 for 24 hours are 2785.89 ppm, while LC50 for 48 hours is 483.16 ppm and LC95 for 48 hours is 1555.49 ppm.


Conclusion: The authors concluded that the ethanolic extract of Citrus hystrix fruit had a biolarvicidal effect on Ae. aegypti larvae, a linear dose-effect relationship, and a positive, strong, and significant correlation.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
2. Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis. 2016;16(8):935–41.
3. Yoshikawa MJ, Kusriastuti R. Surge of dengue virus infection and chikungunya Fever in bali in 2010: the burden of mosquito-borne infectious diseases in a tourist destination. Trop Med Health. 2013;2005–11.
4. Suarjaya K. Profil Kesehatan Provinsi Bali 2017. Dinas Kesehatan Provinsi Bali. 2017;36.
5. Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol. 2013;158(7):1445–59.
6. Kovendan K, Murugan K, Vincent S. Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culici. Parasitol Res. 2012 Feb;110(2):571–81.
7. Tsheten T, Gray DJ, Clements ACA, Wangdi K. Epidemiology and challenges of dengue surveillance in the WHO South-East Asia Region. Trans R Soc Trop Med Hyg. 2021;115(6):583–99.
8. Rubianti I. Evaluasi Peran Juru Pemantau Jentik (Jumantik) Dalam Pemberantasan Vektor Demam Berdarah Dengue (DBD) Di Kota Denpasar Tahun 2017. ORYZA Jurnal Pendidikan Biologi. 2019;8(2):1–9.
9. Melo-Santos MA V, Varjal-Melo JJM, Araújo AP, Gomes TCS, Paiva MHS, Regis LN, et al. Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010;113(2):180–9.
10. Pavela R, Maggi F, Iannarelli R, Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019;193:236–71.
11. Bansal SK, Singh K V, Sharma S, Sherwani MRK. Laboratory observations on the larvicidal efficacy of three plant species against mosquito vectors of malaria, dengue/dengue hemorrhagic fever (DF/DHF) and lymphatic filariasis in the semi-arid desert. J Environ Biol. 2012;33(3):617.
12. Koul O. Plant biodiversity as a resource for natural products for insect pest management. Geoff, M, Gurr, GM, Wratten, SD, Snyder, WE & Read, D MY (Eds), Biodiversity and Insect Pests: Key Issues for Sustainable Management John Wiley & Sons, Ltd. 2012;85–105.
13. Adrianto H. EFEKTIVITAS EKSTRAK DAUN JERUK PURUT (Citrus hystrix), JERUK LIMAU (Citrus amblycarpa), DAN JERUK BALI (Citrus maxima) TERHADAP LARVA Aedes aegypti. Aspirator. 2014;6(1):1–6.
14. Mya MM, Zarzar A, Chitthat N, Aye WO, Than MH, Sein T, et al. Larvicidal, Ovicidal and repellent effect of Citrus hystrix DC (Kaffir lime) fruit, peel and internal materials extracts on Aedes aegypti mosquitoes. Journal of Biological Engineering Research and Review. 2017;4(1):34–43.
15. Wikandari RJ, Surati S. Efek Ekstrak Kulit Jeruk Purut (Citrus hystrix DC) terhadap Morfologi dan Histologi Larva Aedes aegypti. ASPIRATOR - Journal of Vector-borne Disease Studies. 2018;10(2):119–26.
16. Adrianto H, Yotopranoto S, Hamidah H. EFEKTIVITAS EKSTRAK DAUN JERUK PURUT (Citrus hystrix), JERUK LIMAU (Citrus amblycarpa), DAN JERUK BALI (Citrus maxima) TERHADAP LARVA Aedes aegypti. ASPIRATOR - Journal of Vector-borne Disease Studies. 2014;6(1):1–6.
17. Mya MM, Aye YY, Oo AW, Saxena RK. Effect of Citrus hystrix DC Leaves Ethanol Extract on Larvae of Aedes aegypti. Journal of Biological Engineering Research and Review. 2015;2(2):1–6.
18. Ansori ANM, Adrianto H, Hamidah H. Biolarvicidal effectivities of polar fraction extract from Citrus hystrix and Citrus aurantifolia leaf against Culex quinquefasciatus. Journal of Disease Vector. 2018;12(1):33–8.
19. KEMENKES. Farmakope Herbal Indonesia. Jakarta: Departemen Kesehatan Republik Indonesia. 2008;
20. Ochoa SA, Basurto JC, Valdez LMR, Torres LES, Torres BN. In vitro and in silico studies of terpenes , terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say ( Diptera : Culicidae ). Chem Cent J. 2018;1–21.
21. Inaba K, Ebihara K, Senda M, Yoshino R, Sakuma C, Koiwai K, et al. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biol. 2022 Feb;20(1):43.
22. Sutthanont N, Choochote W, Tuetun B, Junkum A, Jitpakdi A, Chaithong U, et al. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and -resistant strains of Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology. 2010;35(1):106–15.
23. Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of severinia buxifolia. J Food Qual. 2019;2019.
24. Pandiyan GN, Mathew N, Munusamy S. Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicol Environ Saf [Internet]. 2019;174(November 2018):549–56. Available from: https://doi.org/10.1016/j.ecoenv.2019.03.019
Diterbitkan
2023-02-23
##submission.howToCite##
WIRA KUSUMA, I Gusti Ngurah Ananda. EFEK BIOLARVISIDA EKSTRAK ETANOL BUAH CITRUS HYSTRIX TERHADAP LARVA AEDES AEGYPTI. Essence of Scientific Medical Journal, [S.l.], v. 20, n. 2, p. 59-64, feb. 2023. ISSN 2655-6472. Tersedia pada: <https://ojs.unud.ac.id/index.php/essential/article/view/93740>. Tanggal Akses: 14 dec. 2025