POTENSI MONTELUKAST SEBAGAI TERAPI TERAPEUTIK PADA PASIEN COVID-19 DENGAN PROGNOSIS BURUK AKIBAT KOMORBIDITAS PENYAKIT OBESITAS

  • Irsyadina Hasana Bharata University of Mataram

Abstract

ABSTRAK


 


Pendahuluan: Beberapa penelitian telah menunjukkan bahwa pasien yang mengalami obesitas lebih rentan terinfeksi dan mengalami komplikasi karena jaringan adiposa yang berlebih pada pasien tersebut dapat menjadi reservoir patogen. Komplikasi akibat inflamasi yang terjadi pada pasien COVID-19 dengan komorbiditas penyakit obesitas terjadi akibat peningkatan tingkat sirkulasi dari banyak sitokin dan protein yang dilepaskan oleh adiposit.


Pembahasan: Sebuah obat reseptor antagonis terhadap sisteinil leukotrien, montelukast, telah dikenal sebagai obat yang berfungsi untuk mengobati penyakit asma dan alergi rhinitis. Berbagai macam sitokin yang dilepaskan oleh jaringan adiposit atau akibat respon infeksi virus, seperti IL-1? dan IL8 terbukti dapat dikurangi peningkatannya ketika diberikan terapi penggunaan montelukast dibandingkan dengan plasebo. Dengan kemampuan montelukast, terapi pemberian obat ini kepada pasien COVID-19 yang mengalami obesitas berpotensi dapat memberikan efek terapeutik.


Simpulan: Sebagai bentuk respon cepat terhadap risiko peningkatan jumlah penderita obesitas di masa pandemi COVID-19, diperlukan suatu terapi yang dapat memberikan efek terapeutik pada pasien COVID-19 dengan komorbiditas penyakit obesitas. Montelukast, reseptor antagonis sisteinil leukotrien berpotensi untuk digunakan sebagai terapi terapeutik terhadap pasien COVID-19 dengan komorbiditas penyakit obesitas karena efek dan sifat yang dapat dimilikinya.


 


Kata kunci: Montelukast 1, Obesitas 2, COVID-19 3, Prognosis 4


 


ABSTRACT


 


Introduction: Several studies have shown that obese patients are more susceptible to infection and complications because excess adipose tissue in these patients can be a reservoir of pathogens. Inflammatory complications that occur in COVID-19 patients with comorbid obesity occur due to increased circulating levels of many cytokines and proteins released by adipocytes


Discussion: A receptor antagonist drug against cysteine ????leukotriene, montelukast, has been known as a drug that works to treat asthma and allergic rhinitis. Various cytokines released by adipocytes or in response to viral infection, such as IL-1? and IL8 have been shown to be reduced when treated with montelukast compared to placebo. With the ability of montelukast, this drug therapy for COVID-19 patients who are obese has the potential to have a therapeutic effect.


Conclusion: As a form of rapid response to the risk of increasing the number of obese people during the COVID-19 pandemic, a therapy that can provide a therapeutic effect on COVID-19 patients with comorbid obesity is needed. Montelukast, a cysteine ??leukotriene receptor antagonist, has the potential to be used as a therapeutic therapy for COVID-19 patients with comorbid obesity because of its effects and properties.


Keywords: Montelukast 1, Obesity 2, COVID-19 3, Prognosis 4

Downloads

Download data is not yet available.

References

Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) [Internet]. 2006 Sep 21 [cited 2022 Sep 23];30(9):1347–55. Available from: https://pubmed.ncbi.nlm.nih.gov/16534530/
2. Han MS, White A, Perry RJ, Camporez JP, Hidalgo J, Shulman GI, et al. Regulation of adipose tissue inflammation by interleukin 6. Proceedings of the National Academy of Sciences [Internet]. 2020 Feb 11 [cited 2021 Jul 13];117(6):2751–60. Available from: https://www.pnas.org/content/117/6/2751
3. Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T, et al. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. PLoS One [Internet]. 2015 Mar 17 [cited 2022 Sep 24];10(3):121971. Available from: /pmc/articles/PMC4363366/
4. Almerie MQ, Kerrigan DD. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Med Hypotheses [Internet]. 2020 Oct 1 [cited 2022 Sep 23];143. Available from: https://pubmed.ncbi.nlm.nih.gov/32492562/
5. de Lucena TMC, da Silva Santos AF, de Lima BR, de Albuquerque Borborema ME, de Azevêdo Silva J. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr [Internet]. 2020 Jul 1 [cited 2022 Sep 24];14(4):597–600. Available from: https://pubmed.ncbi.nlm.nih.gov/32417709/
6. Karczewski J, Śledzińska E, Baturo A, Jończyk I, Maleszko A, Samborski P, et al. Obesity and inflammation. Eur Cytokine Netw [Internet]. 2018 Sep 1 [cited 2022 Sep 23];29(3):83–94. Available from: https://pubmed.ncbi.nlm.nih.gov/30547890/
7. Kassir R. Risk of COVID-19 for patients with obesity. Obesity Reviews [Internet]. 2020 Jun 1 [cited 2021 Jul 13];21(6):e13034. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/obr.13034
8. SCHAD C, GENTILE D, PATEL A, KOEHRSEN J, SCHAFFNER T, SKONER D. Effect of Montelukast on Pro-inflammatory Cytokine Production During Naturally Acquired Viral Upper Respiratory Infections (vURIs) in Adults. Journal of Allergy and Clinical Immunology. 2008 Feb;121(2):S74–S74.
9. Ihaku D, Cameron L, Suzuki M, Molet S, Martin J, Hamid Q. Montelukast, a leukotriene receptor antagonist, inhibits the late airway response to antigen, airway eosinophilia, and IL-5-expressing cells in Brown Norway rats. J Allergy Clin Immunol [Internet]. 1999 [cited 2022 Sep 23];104(6):1147–54. Available from: https://pubmed.ncbi.nlm.nih.gov/10588994/
10. Singulair - Merck.com [Internet]. [cited 2022 Sep 24]. Available from: https://www.merck.com/research/singulair/
11. Florez JC, Hirschhorn J, Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet [Internet]. 2003 [cited 2022 Sep 23];4:257–91. Available from: https://pubmed.ncbi.nlm.nih.gov/14527304/
12. Malavazos AE, Corsi Romanelli MM, Bandera F, Iacobellis G. Targeting the Adipose Tissue in COVID-19. Obesity (Silver Spring) [Internet]. 2020 Jul 1 [cited 2022 Sep 24];28(7):1178–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32314871/
13. Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R. Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. PLoS One [Internet]. 2015 Jul 22 [cited 2022 Sep 24];10(7). Available from: https://pubmed.ncbi.nlm.nih.gov/26200663/
14. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol [Internet]. 2020 Jan 29 [cited 2022 Sep 24];10. Available from: https://pubmed.ncbi.nlm.nih.gov/32063863/
15. Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. J Immunol [Internet]. 2004 Aug 1 [cited 2022 Sep 23];173(3):1503–10. Available from: https://pubmed.ncbi.nlm.nih.gov/15265876/
16. Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy [Internet]. 2006 [cited 2022 Sep 24];36(6):689–703. Available from: https://pubmed.ncbi.nlm.nih.gov/16776669/
17. Chen X, Zhang X, Pan J. Effect of Montelukast on Bronchopulmonary Dysplasia (BPD) and Related Mechanisms. Med Sci Monit [Internet]. 2019 [cited 2022 Sep 23];25:1886–93. Available from: https://pubmed.ncbi.nlm.nih.gov/30862773/
18. Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? - PubMed. Clin Exp Rheumatol [Internet]. 2020 [cited 2021 Jul 13];38(2):337–42. Available from: https://pubmed.ncbi.nlm.nih.gov/32202240/
19. H B, A FN, A G, P A, A H, MP M, et al. Study of montelukast for the treatment of respiratory symptoms of post-respiratory syncytial virus bronchiolitis in children. Am J Respir Crit Care Med [Internet]. 2008 Oct 15 [cited 2021 Jul 13];178(8):854–60. Available from: https://pubmed.ncbi.nlm.nih.gov/18583576/
20. Noor A, Najmi MH, Bukhtiar S. Effect of Montelukast on bradykinin-induced contraction of isolated tracheal smooth muscle of guinea pig. Indian J Pharmacol [Internet]. 2011 May [cited 2021 Jul 13];43(4):445. Available from: /pmc/articles/PMC3153711/
21. AY W, SC C, AW C, Z L, KW T, W L. Anti-inflammatory effects of high-dose montelukast in an animal model of acute asthma. Clin Exp Allergy [Internet]. 2003 Mar 1 [cited 2021 Jul 13];33(3):359–66. Available from: https://pubmed.ncbi.nlm.nih.gov/12614451/
22. Fidan C, Aydoğdu A. As a potential treatment of COVID-19: Montelukast. Med Hypotheses [Internet]. 2020 Sep 1 [cited 2022 Sep 23];142. Available from: https://pubmed.ncbi.nlm.nih.gov/32416408/
23. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med [Internet]. 2020 May 1 [cited 2022 Sep 24];8(5):475–81. Available from: https://pubmed.ncbi.nlm.nih.gov/32105632/
24. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA [Internet]. 2020 Apr 28 [cited 2022 Sep 23];323(16):1574–81. Available from: https://pubmed.ncbi.nlm.nih.gov/32250385/
25. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine 2005 11:8 [Internet]. 2005 Jul 10 [cited 2022 Sep 23];11(8):875–9. Available from: https://www.nature.com/articles/nm1267
26. Watson RA, Pride NB, Thomas EL, Fitzpatrick J, Durighel G, McCarthy J, et al. Reduction of total lung capacity in obese men: comparison of total intrathoracic and gas volumes. J Appl Physiol (1985) [Internet]. 2010 Jun [cited 2022 Sep 24];108(6):1605–12. Available from: https://pubmed.ncbi.nlm.nih.gov/20299612/
27. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet [Internet]. 2020 Feb 15 [cited 2022 Sep 24];395(10223):473–5. Available from: http://www.thelancet.com/article/S0140673620303172/fulltext
28. Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? The Lancet [Internet]. 2020 Apr 4 [cited 2022 Sep 24];395(10230):1111. Available from: http://www.thelancet.com/article/S0140673620306917/fulltext
Published
2023-02-22
How to Cite
BHARATA, Irsyadina Hasana. POTENSI MONTELUKAST SEBAGAI TERAPI TERAPEUTIK PADA PASIEN COVID-19 DENGAN PROGNOSIS BURUK AKIBAT KOMORBIDITAS PENYAKIT OBESITAS. Essential: Essence of Scientific Medical Journal, [S.l.], v. 20, n. 2, p. 71-75, feb. 2023. ISSN 2655-6472. Available at: <https://ojs.unud.ac.id/index.php/essential/article/view/92267>. Date accessed: 08 may 2024. doi: https://doi.org/10.24843/essential.v20i2.92267.