COVID-19 DAN SISTEM KARDIOVASKULAR: SEBUAH TINJAUAN PUSTAKA
Abstract
ABSTRAK
Pendahuluan: Pada tahun 2019, infeksi virus SARS-Cov-2 pertama kali dilaporkan di Wuhan, China. Penularan virus SARS-Cov-2 sangat cepat dengan menggunakan media droplet maupun aerosol, sehingga dengan mudah menyebar ke seluruh penjuru dunia. Hingga kini, total jumlah kasus COVID-19 global telah mencapai angka ratusan juta kasus. COVID-19 sendiri telah banyak dilaporkan memiliki hubungan dengan sistem kardiovaskular.
Pembahasan: Virus SARS-Cov-2 menginfeksi tubuh manusia dengan cara berikatan pada reseptor angiotensin converting enzyme 2 (ACE2). Selain pada paru-paru, reseptor ACE2 dapat ditemukan pada beberapa organ tubuh lainnya, seperti jantung, hati, ginjal, dan lain-lain. Maka dari itu, pasien COVID-19 sering kali memiliki manifestasi klinis di luar paru-paru. Beberapa kondisi patologik yang terdapat pada pasien COVID-19 (seperti respon imun yang berlebih, disfungsi endotel dan gangguan pembekuan darah, ataupun infeksi langsung dari virus SARS-Cov-2) berpotensi menyebabkan kerusakan pada sistem kardiovaskular.
Simpulan: COVID-19 memiliki hubungan erat dengan sistem kardiovaskular. Komorbiditas pada sistem kardiovaskular meningkatkan kerentanan seorang individu terserang COVID-19 dan memperparah perjalanan penyakitnya. Begitu juga sebaliknya, COVID-19 berpotensi memicu gangguan dan penyakit pada sistem kardiovaskular.
Downloads
References
2. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed [Internet] 2020;91(1):157–60. Available from: https://pubmed.ncbi.nlm.nih.gov/32191675
3. Jain U. Effect of COVID-19 on the Organs. Cureus 2020;12(8):1–8.
4. COVID-19 CORONAVIRUS PANDEMIC [Internet]. worldometerAvailable from: https://www.worldometers.info/coronavirus/#countries
5. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020;17(9):543–58.
6. Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding C V., et al. COVID-19 and Cardiovascular Disease. Circ Res 2021;128(8):1214–36.
7. Mithal A, Jevalikar G, Sharma R, Singh A, Farooqui KJ, Mahendru S, et al. High prevalence of diabetes and other comorbidities in hospitalized patients with COVID-19 in Delhi, India, and their association with outcomes. Diabetes Metab Syndr Clin Res Rev [Internet] 2021;15(1):169–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1871402120305245
8. Espinosa OA, Zanetti A dos S, Antunes EF, Longhi FG, Matos TA de, Battaglini PF. Prevalence of comorbidities in patients and mortality cases affected by SARS-CoV2: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo [Internet] 2020;62:119–23. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0036-46652020000100223&tlng=en
9. Farshidfar F, Koleini N, Ardehali H. Cardiovascular complications of COVID-19. JCI insight [Internet] 2021;6(13). Available from: https://pubmed.ncbi.nlm.nih.gov/34061779
10. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019;11(1).
11. Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021;40(5):905–19.
12. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J 2021;97(1147):312–20.
13. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health [Internet] 2020;13(11):1619–29. Available from: http://dx.doi.org/10.1371/journal.pone.0239254
14. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current State of the Science. Immunity [Internet] 2020;52(6):910–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761320301837
15. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell [Internet] 2021;184(4):861–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867421000076
16. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol [Internet] 2020;20(6):355–62. Available from: http://dx.doi.org/10.1038/s41577-020-0331-4
17. Mahat RK, Panda S, Rathore V, Swain S, Yadav L, Sah SP. The dynamics of inflammatory markers in coronavirus disease-2019 (COVID-19) patients: A systematic review and meta-analysis. Clin Epidemiol Glob Heal [Internet] 2021;11(2021):1–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213398421000312
18. Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, et al. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int J Infect Dis [Internet] 2020;96(January):467–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971220303623
19. Wong RSY. Inflammation in COVID-19: from pathogenesis to treatment. Int J Clin Exp Pathol [Internet] 2021;14(7):831–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34367415%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8339720
20. Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci 2022;18(2):459–72.
21. Buicu AL, Cernea S, Benedek I, Buicu CF, Benedek T. Systemic inflammation and COVID-19 mortality in patients with major noncommunicable diseases: Chronic coronary syndromes, diabetes and obesity. J Clin Med 2021;10(8):1–16.
22. Liu F, Liu F, Wang L. COVID-19 and cardiovascular diseases. J Mol Cell Biol [Internet] 2021;13(3):161–7. Available from: https://academic.oup.com/jmcb/article/13/3/161/5998653
23. Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz) [Internet] 2009;57(3):165–76. Available from: https://pubmed.ncbi.nlm.nih.gov/19479203
24. Zhang B, Li X-L, Zhao C-R, Pan C-L, Zhang Z. Interleukin-6 as a Predictor of the Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Epidemiological Studies. Immunol Invest 2018;47(7):689–99.
25. Kanda T, Takahashi T. Interleukin-6 and Cardiovascular Diseases. Jpn Heart J [Internet] 2004;45(2):183–93. Available from: http://www.jstage.jst.go.jp/article/jhj/45/2/45_2_183/_article
26. Sack M. Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol Ther 2002;94(1–2):123–35.
27. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol [Internet] 2018;9:754. Available from: https://pubmed.ncbi.nlm.nih.gov/29706967
28. Karakas M, Koenig W. CRP in Cardiovascular Disease. Herz [Internet] 2009;34(8):607–13. Available from: https://doi.org/10.1007/s00059-009-3305-7
29. Fodor A, Tiperciuc B, Login C, Orasan OH, Lazar AL, Buchman C, et al. Endothelial Dysfunction, Inflammation, and Oxidative Stress in COVID-19 - Mechanisms and Therapeutic Targets. Oxid Med Cell Longev 2021;2021(Dic):1–15.
30. Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis [Internet] 2020;314:58–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915020305815
31. Hokama LT, Veiga ADM, Menezes MCS, Sardinha Pinto AA, de Lima TM, Ariga SKK, et al. Endothelial injury in COVID-19 and septic patients. Microvasc Res [Internet] 2022;140(January):1–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0026286221001734
32. Chen L, Fan X-D, Qu H, Bai R-N, Shi D-Z. Berberine Protects against TNF-α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF-κB/YY1 Signaling Pathway. Evidence-Based Complement Altern Med [Internet] 2021;2021:1–13. Available from: https://www.hindawi.com/journals/ecam/2021/6518355/
33. Eljilany I, Elzouki AN. D-dimer, fibrinogen, and il-6 in covid-19 patients with suspected venous thromboembolism: A narrative review. Vasc Health Risk Manag 2020;16:455–62.
34. Gao X, Xu X, Belmadani S, Park Y, Tang Z, Feldman AM, et al. TNF-α contributes to endothelial dysfunction by upregulating arginase in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2007;27(6):1269–75.
35. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet (London, England) [Internet] 2020;395(10234):1417–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32325026
36. Sakr Y, Giovini M, Leone M, Pizzilli G, Kortgen A, Bauer M, et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care [Internet] 2020;10(124):1–13. Available from: https://doi.org/10.1186/s13613-020-00741-0
37. Fenyves BG, Mehta A, Kays KR, Beakes C, Margolin J, Goldberg MB, et al. Plasma P‐selectin is an early marker of thromboembolism in COVID‐19. Am J Hematol [Internet] 2021;96(12):E468–71. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ajh.26372
38. Gorog DA, Storey RF, Gurbel PA, Tantry US, Berger JS, Chan MY, et al. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol 2022;
39. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P. Comorbidity and its Impact on Patients with COVID-19. 2020;1069–76.
40. Khedr EM, Daef E, Mohamed-Hussein A, Mostafa EF, Zein M, Hassany SM, et al. Impact of comorbidities on COVID-19 outcome. medRxiv Prepr Serv Heal Sci [Internet] 2020;Available from: http://www.ncbi.nlm.nih.gov/pubmed/34013292%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8132266
41. Pachiega J, Afonso AJ dos S, Sinhorin GT, Alencar BT de, Araújo M dos SM de, Longhi FG, et al. Chronic heart diseases as the most prevalent comorbidities among deaths by COVID-19 in Brazil. Rev Inst Med Trop Sao Paulo 2020;
42. Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of comorbidities among individuals with COVID-19: A rapid review of current literature. Am J Infect Control [Internet] 2021;49(2):238–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34013292%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8132266
43. Hasanah N. Analisis Prevalensi Komorbid Dengan Kematian Pasien COVID-29 di Kabupaten Bangkalan. 2021;1–24.
44. Karyono DR, Wicaksana AL. Current prevalence , characteristics , and comorbidities of patients with COVID-19 in Indonesia. 2020;3(August):77–84.
45. Satria RMA, Tutupoho RV, Chalidyanto D. Analisis Faktor Risiko Kematian dengan Penyakit Komorbid Covid-19. J Keperawatan Silampari [Internet] 2020;4(1):48–55. Available from: https://journal.ipm2kpe.or.id/index.php/JKS/article/view/1587
46. Lippi G, Wong J, Henry BM. Hypertension and its severity or mortality in Coronavirus Disease 2019 (COVID-19): a pooled analysis. Polish Arch Intern Med [Internet] 2020;130 (4):304–9. Available from: https://www.mp.pl/paim/issue/article/15272
47. Batiha GES, Gari A, Elshony N, Shaheen HM, Abubakar MB, Adeyemi SB, et al. Hypertension and its management in COVID-19 patients: The assorted view. Int J Cardiol Cardiovasc Risk Prev [Internet] 2021;11(September):1–8. Available from: https://doi.org/10.1016/j.ijcrp.2021.200121
48. Mughal M, Gandhi H, Okoh A, Khakwani M, Kaur I, Wang C, et al. IS HYPERTENSION (HTN) AN INDEPENDENT RISK FACTOR FOR MORTALITY IN COVID-19 PATIENTS? J Am Coll Cardiol [Internet] 2021;77(18):3068. Available from: http://dx.doi.org/10.1016/S0735-1097(20)34148-6
49. Chen J, Liu Y, Qin J, Ruan C, Zeng X, Xu A, et al. Hypertension as an independent risk factor for severity and mortality in patients with COVID-19: a retrospective study. Postgrad Med J 2021;0:1–8.
50. Perez A, Naljayan M, Shuja I, Florea A, Reisin E. Hypertension, Obesity, and COVID-19: a Collision of Pandemics. Curr Hypertens Rep 2021;23(6):1–7.
51. Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med Hypotheses [Internet] 2020;144. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306987720325329
52. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020;63(3):364–74.
53. Li G, Chen Z, Lv Z, Li H, Chang D, Lu J. Diabetes Mellitus and COVID-19: Associations and Possible Mechanisms. Int J Endocrinol 2021;2021:1–10.
54. Mishra Y, Pathak BK, Mohakuda SS, Tilak TVSVGK, Sen S, P H, et al. Relation of D-dimer levels of COVID-19 patients with diabetes mellitus. Diabetes Metab Syndr [Internet] 2020;14(6):1927–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33035824
55. Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr Clin Res Rev [Internet] 2020;14(4):303–10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195120/pdf/main.pdf
56. Elemam NM, Hannawi H, Al Salmi I, Naeem K Bin, Alokaily F, Hannawi S. Diabetes mellitus as a comorbidity in COVID-19 infection in the United Arab Emirates. Saudi Med J 2021;42(2):170–80.
57. Mostaghim A, Sinha P, Bielick C, Knudsen S, Beeram I, White LF, et al. Clinical outcomes and inflammatory marker levels in patients with Covid-19 and obesity at an inner-city safety net hospital. PLoS One [Internet] 2020;15:1–12. Available from: http://dx.doi.org/10.1371/journal.pone.0243888
58. Filippi L, Sartori M, Facci M, Trentin M, Armani A, Guadagnin ML, et al. Pulmonary embolism in patients with COVID-19 pneumonia: When we have to search for it? Thromb Res [Internet] 2021;206:29–32. Available from: https://pubmed.ncbi.nlm.nih.gov/34392021
59. Desai R, Gandhi Z, Singh S, Sachdeva S, Manaktala P, Savani S, et al. Prevalence of Pulmonary Embolism in COVID-19: a Pooled Analysis. SN Compr Clin Med [Internet] 2020;2(12):2722–5. Available from: https://pubmed.ncbi.nlm.nih.gov/33145478
60. Scudiero F, Silverio A, Di Maio M, Russo V, Citro R, Personeni D, et al. Pulmonary embolism in COVID-19 patients: prevalence, predictors and clinical outcome. Thromb Res [Internet] 2021;198:34–9. Available from: https://pubmed.ncbi.nlm.nih.gov/33271421
61. Miró Ò, Jiménez S, Mebazaa A, Freund Y, Burillo-Putze G, Martín A, et al. Pulmonary embolism in patients with COVID-19: incidence, risk factors, clinical characteristics, and outcome. Eur Heart J [Internet] 2021;42(33):3127–42. Available from: https://doi.org/10.1093/eurheartj/ehab314
62. Akel T, Qaqa F, Abuarqoub A, Shamoon F. Pulmonary embolism: A complication of COVID 19 infection. Thromb Res [Internet] 2020;193:79–82. Available from: https://pubmed.ncbi.nlm.nih.gov/32526545
63. Bukhari ZM, Alqarni MS, Abukhodair AW, Alzahrani AS, Alzahrani A, Alsrhani H, et al. COVID-19-Related Pulmonary Embolism: Incidence, Characteristics, and Risk Factors. Cureus [Internet] 2021;13(11):1–7. Available from: https://pubmed.ncbi.nlm.nih.gov/34938617
64. Kho J, Ioannou A, Van den Abbeele K, Mandal AKJ, Missouris CG. Pulmonary embolism in COVID-19: Clinical characteristics and cardiac implications. Am J Emerg Med 2020;38(10):2142–6.
65. Silva BV, Jorge C, Plácido R, Mendonça C, Urbano ML, Rodrigues T, et al. Pulmonary embolism and COVID-19: A comparative analysis of different diagnostic models performance. Am J Emerg Med [Internet] 2021;50:526–31. Available from: https://pubmed.ncbi.nlm.nih.gov/34547695
66. Kwee RM, Adams HJA, Kwee TC. Pulmonary embolism in patients with COVID-19 and value of D-dimer assessment: a meta-analysis. Eur Radiol [Internet] 2021;31(11):8168–86. Available from: https://pubmed.ncbi.nlm.nih.gov/33966132
67. Hawley PC, Hawley MP. Difficulties in diagnosing pulmonary embolism in the obese patient: A literature review. Vasc Med 2011;16(6):444–51.
68. Arrigo M, Huber LC. Pulmonary Embolism and Heart Failure: A Reappraisal. Card Fail Rev [Internet] 2021;7. Available from: https://pubmed.ncbi.nlm.nih.gov/33708418
69. Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding 3rd C V, et al. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ Res [Internet] 2021;128(8):1214–36. Available from: https://pubmed.ncbi.nlm.nih.gov/33856918
70. Bader F, Manla Y, Atallah B, Starling RC. Heart failure and COVID-19. Heart Fail Rev [Internet] 2021;26(1):1–10. Available from: https://pubmed.ncbi.nlm.nih.gov/32720082
71. Boehmer TK, Kompaniyets L, Lavery AM, Hsu J, Ko JY, Yusuf H, et al. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data — United States, March 2020–January 2021. MMWR Morb Mortal Wkly Rep [Internet] 2021;70(35):1228–32. Available from: http://www.cdc.gov/mmwr/volumes/70/wr/mm7035e5.htm?s_cid=mm7035e5_w
72. Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Hear Rhythm [Internet] 2020;17(9):1463–71. Available from: https://pubmed.ncbi.nlm.nih.gov/32387246
73. Buckley BJR, Harrison SL, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH. Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID-19 patients. Eur J Clin Invest 2021;51(11).
74. Ojha N, Dhamoon AS. Myocardial Infarction [Internet]. StatPearls [Internet].2021;Available from: https://www.ncbi.nlm.nih.gov/books/NBK537076/
75. Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med [Internet] 2020;38(7):1504–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32317203
76. Solomon MD, McNulty EJ, Rana JS, Leong TK, Lee C, Sung S-H, et al. The Covid-19 Pandemic and the Incidence of Acute Myocardial Infarction. N Engl J Med [Internet] 2020;383(7):691–3. Available from: http://www.nejm.org/doi/10.1056/NEJMc2015630
77. Rey JR, Caro-Codón J, Rosillo SO, Iniesta ÁM, Castrejón-Castrejón S, Marco-Clement I, et al. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications. Eur J Heart Fail [Internet] 2020;22(12):2205–15. Available from: https://pubmed.ncbi.nlm.nih.gov/32833283
78. Ranard LS, Fried JA, Abdalla M, Anstey DE, Givens RC, Kumaraiah D, et al. Approach to Acute Cardiovascular Complications in COVID-19 Infection. Circ Hear Fail [Internet] 2020;13(7). Available from: https://www.ahajournals.org/doi/10.1161/CIRCHEARTFAILURE.120.007220
79. Ata F, Montoro-Lopez MN, Awouda S, Elsukkar AMA, Badr AMH, Patel AAAH. COVID-19 and Heart Failure: The Big Challenge. Heart Views 2020;21(3):187–92.
80. Desai DS, Hajouli S. Arrhythmias. StatPearls [Internet].2021;
81. Denegri A, Sola M, Morelli M, Farioli F, Alberto T, D’Arienzo M, et al. Arrhythmias in COVID-19/SARS-CoV-2 Pneumonia Infection: Prevalence and Implication for Outcomes. J Clin Med [Internet] 2022;11(5). Available from: https://www.mdpi.com/2077-0383/11/5/1463
82. Pandat S, Zhu Z, Fuentes-Rojas S, Schurmann P. Arrhythmias in COVID-19. Methodist Debakey Cardiovasc J [Internet] 2021;17(5):73–82. Available from: https://pubmed.ncbi.nlm.nih.gov/34992725
83. Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al. Worldwide Survey of COVID-19–Associated Arrhythmias. Circ Arrhythmia Electrophysiol [Internet] 2021;14(3). Available from: https://www.ahajournals.org/doi/10.1161/CIRCEP.120.009458
84. Bhatla A, Mayer MM, Adusumalli S, Hyman MC, Oh E, Tierney A, et al. COVID-19 and cardiac arrhythmias. Hear Rhythm 2020;17(9):1439–44.
85. Babapoor-Farrokhran S, Rasekhi RT, Gill D, Babapoor S, Amanullah A. Arrhythmia in COVID-19. SN Compr Clin Med 2020;2(9):1430–5.
86. Mohammad Zadeh N, Mashinchi Asl NS, Forouharnejad K, Ghadimi K, Parsa S, Mohammadi S, et al. Mechanism and adverse effects of COVID-19 drugs: a basic review. Int J Physiol Pathophysiol Pharmacol 2021;13(4):102–9.
87. Liu D, Zeng X, Ding Z, Lv F, Mehta JL, Wang X. Adverse Cardiovascular Effects of Anti-COVID-19 Drugs. Front Pharmacol 2021;12(August):1–17.
88. Vegivinti CTR, Evanson KW, Lyons H, Akosman I, Barrett A, Hardy N, et al. Efficacy of antiviral therapies for COVID-19: a systematic review of randomized controlled trials. BioMed Central; 2022.
89. Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Hear journal Acute Cardiovasc care 2020;
90. Tleyjeh IM, Kashour Z, AlDosary O, Riaz M, Tlayjeh H, Garbati MA, et al. Cardiac Toxicity of Chloroquine or Hydroxychloroquine in Patients With COVID-19: A Systematic Review and Meta-regression Analysis. Mayo Clin Proc Innov Qual Outcomes 2021;5(1):137–50.
91. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020;92(7):814–8.
92. Wadaa-Allah A, Emhamed MS, Sadeq MA, Ben Hadj Dahman N, Ullah I, Farrag NS, et al. Efficacy of the current investigational drugs for the treatment of COVID-19: a scoping review. Ann Med 2021;53(1):318–34.
93. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med 2022;386(4):305–15.
94. Adebisi YA, Jimoh ND, Ogunkola IO, Uwizeyimana T, Olayemi AH, Ukor NA, et al. The use of antibiotics in COVID-19 management: a rapid review of national treatment guidelines in 10 African countries. Trop Med Health 2021;49(1).
95. Oldenburg CE, Pinsky BA, Brogdon J, Chen C, Ruder K, Zhong L, et al. Effect of Oral Azithromycin vs Placebo on COVID-19 Symptoms in Outpatients with SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA - J Am Med Assoc 2021;326(6):490–8.
96. Li W, Luo X, Poetsch MS, Oertel R, Nichani K, Schneider M, et al. Synergistic Adverse Effects of Azithromycin and Hydroxychloroquine on Human Cardiomyocytes at a Clinically Relevant Treatment Duration. Pharmaceuticals 2022;15(2):1–24.
97. Moore N, Bosco-Levy P, Thurin N, Blin P, Droz-Perroteau C. NSAIDs and COVID-19: A Systematic Review and Meta-analysis. Drug Saf 2021;44(9):929–38.
98. Drake TM, Fairfield CJ, Pius R, Knight SR, Norman L, Girvan M, et al. Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. Lancet Rheumatol 2021;3(7):e498–506.
99. Park J, Lee SH, You SC, Kim J, Yang K. Non-steroidal anti-inflammatory agent use may not be associated with mortality of coronavirus disease 19. Sci Rep 2021;11(1):1–7.
100. Ho J, Sia C, Ngiam J, Loh P, Chew N, Kong W, et al. A review of COVID-19 vaccination and the reported cardiac manifestations. Singapore Med J 2021;(November 2021):1–21.
101. Norhayati MN, Che Yusof R, Azman YM. Systematic Review and Meta-Analysis of COVID-19 Vaccination Acceptance. Front Med 2022;8(January):1–13.
102. Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, et al. Analysis of COVID-19 Vaccine Type and Adverse Effects Following Vaccination. JAMA Netw Open 2021;4(12):1–13.
103. Wahid M, Jawed A, Mandal RK, Dailah HG, Janahi EM, Dhama K, et al. Variants of SARS-CoV-2, their effects on infection, transmission and neutralization by vaccine induced antibodies. Eur Rev Med Pharmacol Sci 2021;25(18):5857–64.
104. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med 2022;28(2):410–22.