EFFECTS OF THE MEDITERRANEAN DIET ON GLYCEMIC CONTROL AND INSULIN SENSITIVITY IN DIABETES MELLITUS PATIENTS: A SYSTEMATIC REVIEW AND META-ANALYSIS
Abstract
Latar Belakang: Diabetes melitus tipe 2 (DMT2) telah menjadi perhatian global dengan prevalensi mencapai 6,28% di seluruh dunia yang ditandai dengan resistensi insulin, peningkatan glukosa darah kronis, dan berkontribusi terhadap perkembangan berbagai penyakit dengan mortalitas yang tinggi. Beberapa pendekatan diet dikembangkan untuk memperbaiki kondisi DMT2, termasuk diet Mediterania, yang belum banyak dievaluasi.
Metode: Literatur ini dibuat untuk mengevaluasi efek diet Mediterania terhadap kontrol glikemik dan sensitivitas insulin pada pasien DMT2. Metode: Tinjauan sistematis dan meta-analisis digunakan untuk membuat literatur ini, mencakup studi klinis yang valid dan diambil dari database PubMed, ScienceDirect, dan Cochrane Library hingga Juli 2023. Sebanyak 7 studi melibatkan 1395 partisipan diinklusi dan dianalisis menggunakan Review Manager dan R untuk mengevaluasi kontrol glikemik, resistensi insulin, dan Indeks Massa Tubuh (IMT).
Hasil: Hasil penelitian menunjukan, pemberian diet Mediterania mampu menurunkan kadar glukosa darah secara signifikan (MD -0.69; 95%CI: -1.08 sampai -0.29; I2 = 67%; p: 0.0006), baik glukosa darah puasa maupun non-puasa. Selain itu, diet ini juga dapat menurunkan HbA1c secara bermakna dibandingkan dengan diet kontrolnya (MD -0.45; 95%CI: -0.68 sampai -0.21; I2 = 63%; p: 0.0003). Dalam menurunkan resistensi insulin, diet Mediterania dapat menurunkan HOMA-IR yang signifikan dengan perbedaan protective ratio sebesar -0.82 (95%CI: -1.29 sampai -0.36; I2 = 79%; p=0.0005). Terlebih lagi, diet Mediterania dapat menurunkan IMT pada pasien DMT2 (MD: -0.66; 95%CI: -0.98 sampai -0.34; I2 = 44%; p<0.00001) yang tentunya dapat mencegah keparahan dan komplikasi lanjut dari penyakit ini.
Simpulan: Diet Mediterania dapat menurunkan kadar glukosa darah puasa, non-puasa, HbA1c, HOMA-IR, dan IMT pada DMT2.
Downloads
References
2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018;14(2):88–98.
3. Salma N, Fadli F, Fattah AH. Hubungan Kepatuhan Diet Dengan Kadar Gula Darah Puasa Pada Pasien Diabetes Melitus Tipe 2. Media Keperawatan Politek Kesehat Makassar 2020;11(1):102.
4. Indrakusuma AABP, Wahyuni LPS, Wiguna IGWW, Devy AAT, Sasmana IGAP, Indrayani AW. Potential effect of secondary metabolites in Persea americana seeds as an ?-amylase inhibitor on type 2 diabetes mellitus. Intisari Sains Medis 2021;12(3):886–96.
5. Sasmana IGAP, Wiranata S, Yogananda KC, Wihandani DM, Supadmanaba IGP. Clinicopathological and Prognostic Significance of SRY-Box Transcription Factor 2 (SOX2) Overexpression in Central Nervous System Tumor: A Meta-Analysis. Bali Med J 2023;12(2):1733–9.
6. Milenkovic T, Bozhinovska N, Macut D, Bjekic-Macut J, Rahelic D, Velija Asimi Z, et al. Inspiration for the Scientific World . A Review. Nutrients 2021;1–19.
7. Salas-Salvadó J, Bullo M, Estruch R, M R, Covas MI, N IJ, et al. Original Research Prevention of Diabetes With Mediterranean Diets. Ann Intern Med 2014;160(1):10.
8. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020;21(17):1–34.
9. Sasmana IGAP, Rahadi PNK, Devy AAT, Dewi PAS, Supadmanaba IGP, Wihandani DM. Apoliprotein C-III (Apo C-III) inhibitors effect of antisense oligonucleotides in the management of dyslipidemia. Indones J Biomed Sci 2023;17(1):51–6.
10. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Arch Med Sci 2013;9(2):191–200.
11. McKernan K, Varghese M, Patel R, Singer K. Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte 2020;9(1):212–22.
12. Cheung BHK, Ho ICH, Chan RSM, Sea MMM, Woo J. Current evidence on dietary pattern and cognitive function. 1st ed. Elsevier Inc.; 2014.
13. Cen J, Sargsyan E, Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr Metab 2016;13(1):1–9.
14. Bodnaruc AM, Prud’Homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: A review. Nutr Metab 2016;13(1):1–16.
15. Costa E, Cosme F, Jordão AM, Mendes-Faia A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. J Int des Sci la Vigne du Vin 2014;48(1):51–62.
16. Belwal T, Nabavi SF, Nabavi SM, Habtemariam S. Dietary anthocyanins and insulin resistance: When food becomes a medicine. Nutrients 2017;9(10).
17. Sasmana IGAP, Kusuma IKWA, Dhananjaya IGAD, Devy AAT, Wihandani DM. Pengaruh ekstrak aqueous Clitoria ternatea terhadap kerusakan histologi otak dan gangguan memori pada tikus wistar terinduksi diet tinggi lemak. 2023;12(3):78–83.
18. Yang J, Kurnia P, Henning SM, Lee R, Huang J, Garcia MC, et al. Effect of standardized grape powder consumption on the gut microbiome of healthy subjects: A pilot study. Nutrients 2021;13(11):1–11.
19. Sanjiwani MID, Aryadi IPH, Semadi IMS. Review of Literature on Akkermansia muciniphila and its Possible Role in the Etiopathogenesis and Therapy of Type 2 Diabetes Mellitus. J ASEAN Fed Endocr Soc 2022;37(1):69–74.
20. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of Diabetes. J Diabetes Res 2018;2018:10–3.
21. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes, Metab Syndr Obes Targets Ther 2020;13:3611–6.
22. Jesch ED, Carr TP. Food ingredients that inhibit cholesterol absorption. Prev Nutr Food Sci 2017;22(2):67–80.