PREPARASI TiO2-TERSENSITIFKAN AgCl DENGAN TEKNIK REFLUKS DALAM SUASANA ASAM DAN KARAKTERISASINYA
Abstract
ABSTRAK: Titanium dioksida (TiO2)-tersensitifkan variasi prosen berat AgCl (TiO2@AgCl): 0; 1,3; 3,4; 8,3 dan 15,2% dihasilkan dalam suasana asam. Material TiO2@AgCl dipreparasi dari reaksi emulsi TiO2 (rutile)-teradsorpsikan ion Cl-, AgNO3, dan HNO3 dengan teknik refluks pada temperatur 150oC selama 6 jam. Keberadaan AgCl sebagai sensitiser terbentuk dari reaksi ion Cl- yang terabsorbsi pada permukaan TiO2(rutile) dengan ion Ag+ yang berasal dari larutan AgNO3. Sampel TiO2@AgCl yang berisi variasi % berat AgCl: 0; 1,3; 3,4; 8,3 dan 15,2% diperoleh dari reaksi TiO2 (rutile) teradsorpsi ion Cl- dengan variasi % berat perak (Ag): 0; 1,5; 3; 6 dan 9% yang berasal dari AgNO3. Semua TiO2@AgCl yang dihasilkan dikarakterisasi dengan X-Ray Diffraction (XRD) dan Spektrofotometer UV-Vis Diffuse Reflectance. Dalam semua sampel (TiO2@AgCl) mengandung anatase (minor), AgCl (minor) dan rutile (major), kecuali pada TiO2 tanpa AgCl hanya berisi anatase (minor) dan rutile (major). Energi celah pita (Eg) sampel TiO2@AgCl pada prosen berat AgCl: 1,3; 3,4; 8,3 dan 15,2% secara berturut-turut: 3,24; 3,00; 3,09 dan 2,95 eV, sedangkan pada TiO2 tanpa AgCl sebesar 3,05 eV. Ukuran kristal masing-masing fasa dalam TiO2@AgCl yaitu sekitar 5-9 nm untuk fasa anatase, 9-11 nm untuk fasa rutile dan 37-60 nm untuk fasa AgCl.
Kata Kunci: pensensitif anorganik, teknik refluks, energi celah pita
ABSTRACT: Titanium dioxide (TiO2) sensitized AgCl variations in weight percent (wt%) (TiO2@AgCl): 0; 1.3; 3.4; 8.3 and 15.2% were obtained on the acidic conditions (pH»2). Materials of TiO2@AgCl were obtained from the reaction of TiO2(rutile) adsorbed Cl- ions, AgNO3, and HNO3 via reflux technique at temperatures of 150oC for 6 hours. The existence of AgCl as sensitiser formed from the reaction of Cl-ions are absorbed on the surface of TiO2 (rutile) with Ag+ ions originating from AgNO3 solution. Samples of TiO2@AgCl that contain variations wt% AgCl: 0; 1.3; 3.4; 8.3 and 15.2% was obtained from the reaction of TiO2(rutile) adsorbed Cl- ions at variation wt% of silver (Ag): 0; 1.5; 3; 6 and 9% originating from AgNO3. All of TiO2@AgCl were characterized by X-Ray Diffraction (XRD) and UV-Vis Spectrophotometer Diffuse Reflectance. In all samples (TiO2@AgCl) contains anatase (minor), AgCl (minor) and rutile (major), except on TiO2 without AgCl only contain anatase (minor) and rutile (major). Band gap (Eg) of TiO2@AgCl at AgCl variations in wt%: 1.3; 3.4; 8.3 and 15.2% is 3.24; 3.00; 3.09 and 2.95 eV respectively, whereas the band gap of TiO2 without AgCl is 3.05 eV. The size of each crystal phase on TiO2@AgCl is about 5-9 nm for the anatase phase, 9-11 nm for the rutile phase and 37-60 nm for AgCl phase.
Downloads
References
[2] Rajh, T., Ostafin, A. E., Micic, O. I., Tiede, D. M., & Thurnauer, M. C., 1996. Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: An EPR study, Journal Physics Chemistry, 100(11): 4538 - 4545.
[3] Chen, Y. H., Yi, Y. L., Rong, H. L., & Fu, S. Y., 2009. Photocatalytic degradation of p-phenylene-diamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution, Journal of Hazardous Materials, 163: 973 - 981.
[4] Dastan, D. & Chaure, N. B., 2014. Influence of surfactants on TiO2 nanoparticles grown by sol-gel technique, International Journal of Materials Mechanics and Manufacturing, 2: 21 - 24.
[5] Smith, W., Shun, M., Ganhua, L., Alexis, C., Junhong, C. & Yiping, Z., 2010. The effect of Ag nanoparticle loading on the photocatalytic aactivity of TiO2 nanorod arrays, Chemical Physics Letters, 485:171 - 175.
[6] Huang, Z., Maness, P. C., Blake, D. M., Wolfrum, E. J., Smolinski, S., & Jacoby, W. A., 2000. Bactericidal mode of titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 130: 163 -170.
[7] Venckatesh, R., Kartha, B. & Rajeshwara, S., 2012. Synthesis and characterization of nano TiO2-SiO2:PVA Composite, International Nano Letters, 2: 1 - 5.
[8] Chekina, F., Samira B. & Sharifah B. A. H., 2013. Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electro-catalytic oxidation of l-methionine, Sensors and Actuators B, 177: 898 - 903.
[9] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M. & Watanabe T., 1998. Photogeneration of highly amphiphilic TiO2 surfaces, Advance Material, 10: 135 - 139.
[10] Melemeni, M., Xekoukoulotakis N. P., Mantzavinos, D. & Kalogerakis, N., 2009. Disinfection of municipal wastewater by TiO2 photocatalysis with UV-A, visible and solar irradiation and BDD electrolysis, Global NEST Journal, 11: 357 - 363.
[11] Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, W., 1995. Environmental applications of semiconductor photocatalysis, Chemical Review, (95): 69 - 96.
[12] Anpo, M., & Takeuchi, M., 2003. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis, 216: 505 - 516.
[13] Chen, Y., Yang, S., Wang, K. & Lou, L., 2005. Role of primary active species and TiO2 surface characteristic in UV-illuminated photo-degradation of acid orange, Journal Photo-chemistry and Photobiology A: Chemistry, 172: 47 - 54.
[14] Cheng, H., Ma, J., Zhao, Z. & Qi, L., 1995. Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chemistry of Material, 7(4): 663 - 671.
[15] Wang, P., Wang, D., Li, H., Xie, T., Wang, H. & Du, Z., 2007. A facile solution-phase synthesis of high quality water-soluble anatase TiO2 nanocrystals, Journal Colloid and Interface Science, 314: 337 - 340.
[16] Youji, L.I., Mingyuan, M.A., Wang, X. & Wang, X., 2008. Inactivated properties of activated carbon supported TiO2 nanoparticles for bacteria and kinetic study, Journal of Environmental Sciences, 20: 1527 - 1533.
[17] Nagamine, S., Sugioka, A., Iwamoto, H. & Konishi, Y., 2008. Formation of TiO2 hollow microparticles by spraying water droplets into an organic solution of titanium tetraisopro-poxide (TTIP) - effects of TTIP concentration and TTIP-protecting additives, Journal Powder Tecnology, 2: 168 - 175.
[18] Yu, J., Wang, G., Cheng, B. & Zhou, M., 2007. Effects of hydrotermal temperature and time the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Applied Catalysis Environmental, 69:171 - 180.
[19] Lee, M. S., Hong, S.S. & Mohseni, M., 2005. Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agentk, Journal of Molecular Catalysis A, 1-2: 135 - 140.
[20] Chen, X. & Mao, S. S., 2007. Titanium dioxide nanomaterials: synthesis, properties, modifica-tions, and applications, Chemical Review, 10: 2891-2959.
[21] Yeo, S. Y., Lee, H. J. & Jeong, S. H., 2003. Preparation of nanocomposite fibers for permanent antibacterial effect, Journal of Materials Science, 38: 2143–2147.
[22] Sangchaya, W., Sikonga, L. & Kooptarnonda, K., 2012. Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles, Procedia Engineering 32: 590 -596.
[23] Mu’izayanti, V.A. 2016. Preparasi TiO2-tersensitifkan AgCl pada Kondisi pH Basa dan Aplikasinya sebagai Material Antiburam, Skripsi, FMIPA-UNY.
[24] Klug, H. P., & Alexander, L., 1954. X-Ray Diffration Procedures-for Polycrystalline and Amorphous Materials. New York, John Wiley & Sons.
[25] Evain, M., 1995. U-Fit v1.3. Nantes: Institute des Materiaux de Nantes. France.
[26] Alexander, L. & Klug, H. P. 1950. Determination of crystallite size with the X-ray spectrometer, Journal of Applied Physic, 21: 137-142.
[27] Kubelka, 1948. New contribution to the optics of intensely lightscattering materials. part I, Journal of the Optical Society of America, 38(5): 448 – 457.
[28] Tandon, S. & Gupta, J., 1970. Measurement of forbidden energy gap of semiconductors by diffuse reflectance technique, Physica Status Solidi, 38: 363 - 367.
[29] Sreen, K., Poulose, C. & Unni, B., 2008. Colored cool colorants based on rare earth metal ions, Solar Energy Mater Solar Cells, 92: 1462 - 1467.
[30] Morales, A. E., Sanchez, M. E. & Pal, U., 2007. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostruc-tures, Revista Mexicana de Fisica, 53(5): 18 -22.
[31] Ting, C. & Chen, S., 2000. Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films, Journal of Applied Physics, 88: 4628 - 4633.
[32] Su, C., Hong, B.Y. & Tseng, C.M. 2004. “Sol–gel preparation and photocatalysis of titanium dioxide”. Catalysis Today 96: 119 - 126.
[33] Weirich, T. E., Winterer, M., Seifried, S., Hahn, H. & Fuess, H. 2000. “Rietveld analysis of electron powder diffraction data from nano-crystalline anatase TiO2”. Ultramicroscopy 81(3-4): 263 - 270.
[34] Swope, R. J., Smyth, J. R., & Larson, A. C., 1995. H in Rutile-type compounds: I. single-crystal neutron and X-ray diffraction study of H in rutile, American Mineralogist, 80: 448-453.
[35] Hull, S. & Keen, D. A., 1999. Pressure-induced phase transitions in AgCl, AgBr, and AgI, Physical Review B, 59: 750 - 561.
[36] Fesenden & Fesenden. 1997. “Kimia Organik Jilid 1”. Jakarta: Erlangga.
[37] Tuschel, D., 2015. The correlation method for the determination of spectroscopically active vibrational modes in crystals, Spectroscopy, 30(12): 17 - 22.