IDENTIFIKASI EFEDRIN HIDROKLORIDA, DEKSTROMETORFAN DAN TRAMADOL HIDROKLORIDA DALAM TABLET DENGAN SPEKTROSKOPI RAMAN

  • Khairul Mahfuz Program Magister Kimia Terapan, Program Pascasarjana, Universitas Udayana, Denpasar-Bali, Indonesia
  • I Made Agus Gelgel Wirasuta 1 Program Magister Kimia Terapan, Program Pascasarjana, Universitas Udayana, Denpasar-Bali, Indonesia 2 Jurusan Kimia, Fakultas MIPA, Universitas Udayana, Jimbaran-Badung, Bali, Indonesia
  • Ni Made Suaniti 1 Program Magister Kimia Terapan, Program Pascasarjana, Universitas Udayana, Denpasar-Bali, Indonesia 2 Jurusan Kimia, Fakultas MIPA, Universitas Udayana, Jimbaran-Badung, Bali, Indonesia

Abstract

ABSTRAK: Penelitian ini bertujuan untuk mengetahui perubahan pola spektrum Raman Efedrin Hidroklorida, Dekstrometorfan dan Tramadol Hidroklorida pada tablet obat (Decolsin®,Tramifen®) dan sampel simulasi. Tablet Obat serta sampel simulasi Efedrin Hidroklorida, Dekstrometorfan dan Tramdol Hidroklorida dengan konsentrasi 80%, 60%, 40% dan 20% dalam serbuk Amprotab diukur dengan spektroskopi Raman 1064 nm pada bilangan gelombang 200-2000 cm-1. Hasil yang didapat dianalisis dengan cross correlation function dan dilihat nilai koefisien korelasi (r). Pada masing-masing tablet Obat hanya Parasetamol yang dapat diidentifikasi karena nilai koefisien korelasi r > 0,95. Berdasarkan hasil sampel simulasi diketahui bahwa konsentrasi Efedrin Hidroklorida, Dekstrometorfan dan Tramadol Hidroklorida pada suatu campuran berpengaruh terhadap pola spektrum Raman yang dihasilkan. Pola puncak spektrum Raman untuk identifikasi Efedrin Hidroklorida yaitu pada bilangan gelombang 1305 cm-1 (C-N), 1380 cm-1 (C-CH3), 1662 cm-1 (C=C), 1600 cm-1 (C-OH), dan 315 cm-1 (C-C alifatik); Dekstrometorfan yaitu puncak pada bilangan gelombang 1040 cm-1 (cincin Aromatis I), 1495 cm-1 (cincin Aromatis II), 768 cm-1 (C-Cl), 1580 cm-1 (cincin Hetero), 1667 cm-1 (C=C ) dan 855 cm-1 (C-O-C); Tramadol Hidroklorida yaitu puncak pada bilangan gelombang 1006 cm-1 (cincin aromatis I), 1467 cm-1 (cincin aromatis II), 1552 cm-1 (C-OH), 1635 cm-1 (C=C), 285 cm-1 (C-C Alifatik), 1345 cm-1 (C-N) dan 855 cm-1 (C-O-C).


 


ABSTRACT: The aims of this study were determined to change in the pattern of Raman spectrum of Ephedrine Hydrocloride, Dextrometorfan and Tramadol Hydrocloride on tablet (Decolsin®,Tramifen®) and simulation samples. Tablets and simulation samples of this active compound made in Amprotab with concentration 80%, 60%, 40% and 20% measured by 1064 nm Raman spectroscopy in wave numbers 200-2000 cm-1. The results can be analyzed by cross-correlation function and showed the value of the correlation coefficient r. On tablet only Paracetamol can be identified because it has coefficient correlation r > 0,95. Based on the results of the simulation sample is known that the concentration of active compound in a mixture affect the pattern of the Raman spectra. Peak pattern to identification Ephedrine Hydrocloride is at wave number 1305 cm-1 (C-N), 1380 cm-1 (C-CH3), 1662 cm-1 (C=C), 1600 cm-1 (C-OH), dan 315 cm-1 (C-C alifatik); Dextrometorfan is at wave number 1040 cm-1 (Aromatic Ring I), 1495 cm-1 (Aromatic Ring II), 768 cm-1 (C-Cl), 1580 cm-1 (Hetero Ring), 1667 cm-1 (C=C ) dan 855 cm-1 (C-O-C); Tramadol Hydrocloride is at wave number 1006 cm-1 (Aromatic Ring I), 1467 cm-1 (Aromatic Ring II), 1552 cm-1 (C-OH), 1635 cm-1 (C=C), 285 cm-1 (C-C Alifatik), 1345 cm-1 (C-N) and 855 cm-1 (C-O-C).


 


 

Downloads

Download data is not yet available.

References

[1] Batrick, E. G..2002a. Aplication of Vibrational Spectroscopy in Criminal Forensic Analysis. England: John Wiley & S ons, Page: 1-12
[2] Chalmers, J. M., H. G. M. Edwards, and M. D. Hargreaves. 2010. Infrared and Raman Spectroscopy in Forensic Science. United Kingdom: John Wiley & Sons, Page: 5-10
[3] Thomson, G. 2002. Forensic Applications of Raman Spectroscopy (Disertation). England: The University of Leeds
[4] Bell, S. E. J., J. R. Beattie, J. J. McGarvey, K. L. Peters, N. M. S. Sirimutu and S. J. Speers. 2004. Development of Sampling Method for Raman Analysis of Solid Dosage Forms of Therapeutic and Illicit Drugs. Journal of Raman Spectroscopy. 35: 409-417
[5] Fedchak, S.. 2014. Presumptive Field Testing Using Portable Raman Spectroscopy. Las Vegas: U. S. Departement of Justice
[6] Ryder, A. G., G. M. O’Connor and T. J. Glynn. 2000. Quantitative Analysis of Cocaine in Solid Mixtures Using Raman Spectroscopy and Chemometric Method. Journal of Raman Spectroscopy. 31(3): 221-227
[7] Taylor, R. 1990. Interpretation of Correlation Coefficient : A Basic Review. Journal of Diagnostic Medical Sonography, 6: 35-36
[8] Smith, E. and G. Dent. 2005. Modern Raman Spectroscopy – A Practical Approach. England: John Wiley & Sons
[9] Batrick, E. G.. 2002b. Forensic Analysis by Raman Spectroscopy: An Emerging Technology. France: MEDIMOND
[10] Froment, F., A. Tournie and P. Colomban. 2008. Raman Identificatiom of Natural Red to Yellow Pigments : Ochre and Iron-Containing Ores. Journal of Raman Spectroscopy. 39: 560-568
Published
2017-12-22
How to Cite
MAHFUZ, Khairul; GELGEL WIRASUTA, I Made Agus; SUANITI, Ni Made. IDENTIFIKASI EFEDRIN HIDROKLORIDA, DEKSTROMETORFAN DAN TRAMADOL HIDROKLORIDA DALAM TABLET DENGAN SPEKTROSKOPI RAMAN. CAKRA KIMIA (Indonesian E-Journal of Applied Chemistry), [S.l.], v. 5, n. 2, p. 75 - 85, dec. 2017. ISSN 2302-7274. Available at: <https://ojs.unud.ac.id/index.php/cakra/article/view/35987>. Date accessed: 05 oct. 2022.
Section
Articles