FOTOKATALISIS METILEN BIRU DENGAN NANOPARTIKEL PERAK (NPAg) YANG DISINTESIS DENGAN EKSTRAK AIR DAUN KOPI ROBUSTA
Abstract
ABSTRAK: Limbah cair metilen biru dari industri tekstil menimbulkan masalah bagi lingkungan dan kesehatan jika tidak ditangani dengan baik. Metode fotodegradasi berbasis fotokatalis yang lebih ekonomis dan efektif dapat menjadi pilihan untuk menanggulangi limbah tersebut. Nanopartikel perak yang disintesis secara ramah lingkungan dari ekstrak air daun kopi Robusta digunakan sebagai fotokatalis. Daun kopi robusta mengandung metabolit sekunder seperti kuersetin yang berperan sebagai bioreduksi dan capping agent dalam sintesis nanopartikel perak. Tujuan dari penelitian ini adalah untuk mengetahui karakteristik nanopartikel perak yang diperoleh, kondisi optimal fotodegradasi metilen biru, dan efektivitas nanopartikel perak sebagai fotokatalis pada proses fotodegradasi pewarna metilen biru. Nanopartikel perak terbaik diperoleh pada rasio volume ekstrak air daun kopi Robusta dan AgNO3 1 mM 1: 9 pada suhu sintesis 60oC. Nanopartikel tersebut berbentuk bulat dan menunjukkan serapan UV-Vis pada panjang gelombang 410,5 nm, serta berukuran 27,04 nm yang terdistribusi seragam (monodisperse) dengan nilai indeks polidispersitas (PdI) sebesar 0,3173. Potensial zeta NPAg sebesar -29,76 mV yang tergolong baik sehingga nanopartikel tidak mudah untuk teraglomerisasi. Kondisi optimal untuk fotokatalisis yakni volume NPAg 1 mL pada pH 10 selama 1 jam. Efisiensi degradasi diuji pada konsentrasi zat warna metilen biru 50 hingga 400 mg/L, dengan persentase tertinggi sebesar 57,10% pada konsentrasi 100 mg/L. Dapat disimpulkan bahwa 1 mL fotokatalis NPAg mampu mendegradasi metilen biru hingga 57,10% dalam waktu 1 jam.
ABSTRACT: Methylene blue effluent from the textile industry poses a problem to the environment and health if not handled properly. A more economical and effective photocatalyst-based photodegradation method can be an option to tackle the waste. Environmentally friendly silver nanoparticles synthesized from aqueous extract of Robusta coffee leaves were used as photocatalysts. Robusta coffee leaves contain secondary metabolites such as quercetine that act as bioreduction and capping agents in the synthesis of silver nanoparticles. The purpose of this study was to determine the characteristics of silver nanoparticles obtained, the optimal conditions for methylene blue photodegradation, and the effectiveness of silver nanoparticles as photocatalysts in the methylene blue dye photodegradation process. The best silver nanoparticles were obtained at a volume ratio of Robusta coffee leaf water extract and 1 mM AgNO3 of 1:9 at temperature of 60oC. The nanoparticles were spherical in shape and showed UV-Vis absorption at a wavelength of 410.5 nm, and a size of 27.04 nm which was uniformly distributed (monodisperse) with an PdI value of 0.3173. The zeta potential of NPAg is -29.76 mV which is classified as good so that the nanoparticles are not easy to agglomerate. The optimal condition for photocatalysis is the volume of NPAg 1 mL at pH 10 for 1 hour. The degradation efficiency was tested at methylene blue dye concentrations of 50 to 400 mg/L, with the highest percentage of 57.10% at a concentration of 100 mg/L. It can be concluded that 1 mL of NPAg photocatalyst is able to degrade methylene blue up to 57.10% within 1 hour.
Downloads
References
[2] Camargo, V. dan Morales, M. 2013. Azo Dyes: Characterization and Toxicity- A Review. Textiles and Light Industrial Science and Technology. 2(2): 85-103
[3] Madrakian, T., Abbas A., and Mazaher A. 2012. Adsorption and Kinetic Studies of Seven Different Organic Dyes onto Magnetite Nanoparticles Loaded Tea Waste and Removal of Them from Wastewater Samples. Spechtrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 99: 102-109.
[4] Khan, I., Khalid, S., Ivar, Z., Baoliang, Z., Abdulmajeed, H., Ashfaq, A., Shujaat, A., Noor, A., Luqman, A., Tariq, S., dan Ibrahim, K. 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity, and Photodegradation. Water. 14(242): 1-30.
[5] Gunlazuardi, J. dan Tjahjanto, R. T. 2001. Preparasi Lapisan Tipis TiO2 sebagai Fotokatalis: Keterkaitan antara Ketebalan dan Aktivitas Fotokatalisis. Makara Jurnal Penelitian Universitas Indonesia. Vol. 5 (2): 81-91
[6] Akhtar, M.S., Panwar, J. dan Yun, Y.S. 2013. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustainable Chem Eng. 1: 591–602.
[7] Shrestha, S. dan Sarwendra, A. 2017. Size Dependent Optical Properties of Silver Nanoparticles Synthesized from Fruit Extract of Malus pumila. J. Nepal Chem. Soc. 37: 1-6
[8] Chandran, S.P., Chaundhary, M., Pasricha, R., Ahmad, A., Sastry, M. 2008. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnol Prog. 22: 577-83
[9] Krishnaraj, C., Jagan, E., Rajasekar, S., Selvakumar, P., Kalaichelvan, P., Mohan, N. 2010. Synthesis of Silver Nanoparticles Using Acalypha Indica Leaf Extract and Its Antibacterial Activity Against Water Borne Pathogens. Colloids Surf B Biointerfaces. 76: 50-6
[10] Santhoshkumar, T., Rahuman, A., Rajakumar, G., Marimuthu, S., Bagavan, A., Jayaseelan, C. Synthesis of Sliver Nanoparticles Using Nelumbo nucifera Leaf Extract and Its Larvicidal Activity Against Malaria and Filariasis Vectors. Parasitol Res. 108: 693-702
[11] Kurniawan, Y. dan Unsyura, D. 2018. Uji Aktivitas Ekstrak Etanol 70% Daun Kopi Robusta (Coffea canephora Pierre ex Froehn) Terhadap Larva Nyamuk Aedes aegypti Instar III. Indonesia Natural Research Pharmaceutical Journal. 3(1): 74-82
[12] Lestari, G.A., Iryanti, E., dan James, S. 2020. Efektivitas Nanopartikel Perak (NPAg) untuk Fotodegradasi Zat Warna Indigosol Blue. Cakra Kimia. 8(1): 34-40
[13] Ibrahim, N., Gharib, M., Noura, H. dan Marwa, M. 2024. Green Synthesis Of Silver Nanoparticles And Its Environmental Sensor Ability To Some Heavy Metals. BMC Chem. 18(1)
[14] Marslin G., Siram K., Maqbool, Q. 2018. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials. 11(6): 940
[15] Khairani, I., Jeane, S., Rahel, N. dan Elisa, N. 2024. Quantitative Analysis of Phytochemical Compounds and Antihyperglycemic Potential of Robusta Coffee from West Lampung. Jurnal Sumberdaya Hayati. 10(1): 1-6
[16] Oktavia. I. dan Suyatno. S. 2021. Review Artikel: Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Tumbuhan Sebagai Bahan Antioksidan. UNESA Journal of Chemistry. 10(1): 9-43.
[17] Ider, M., Kamal, A., Adil, E. dan Said, O. 2017. Silver Metallic Nanoparticles with Surface Plasmon Resonance: Synthesis and Characterizations. Journal of Cluster Science. 28(3)
[18] Paramelle, D., Anton, S., Sergey, G., David, G. dan Paul, F. 2014. Rapid Method To Estimate The Concentration Of Citrate Capped Silver Nanoparticles From UV-Visible Light Spectra. Research Gate. 1-3
[19] Velgosová, O., Lívia M. dan Vladimír M. 2022. Influence of Reagents on the Synthesis Process and Shape of Silver Nanoparticles. Materials. 15(6829): 1-10
[20] Stavinskaya, O., Iryana, L., Tetiana, F. dan Marina, K. 2019. Effect Of Temperature on Green Synthesis of Silver Nanoparticles Using Vitex Agnus-Castus Extract. Chemistry Journal of Moldova. 14(2): 117-121
[21] Solomon, S.D., M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, and C. Boritz, Lorraine, M. 2007. Journal of Chemical Education. 84(2): 322-325
[22] Bahareh, K. dan Hamid, R. 2019. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. 12(8):1823-1838
[23] Abdullah. M. 2008. Pengantar Nanosains. FMIPA ITB. Bandung
[24] Roldan, G., Liliana, M., Jesus, A., Luis, F., Rodolfo, P. dan Lina, M. 2018. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments. Springer Netherlands. 20(3).
[25] Santana, P. dan Noralvis, F. The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Particle and Particle System Characterization. 40.
[26] Ghasemi, S., Sara, Faezeh , K., Diba, E., Mehran, N., Sina, M., Ehsan, Z. dan Fatemeh. 2024. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Scientific Reports. 14(4130)
[27] Malvern. 2015. Zeta Potential-An Introduction in 30 minute. Malvern Instrument Limited. Groovewood
[28] Routh, H., Pamela, C., Lailla, d., Gabriela, P., Bruno, S., Giovani, P., Denise, C., Romano, E., Virginia, C. dan Wlliam, L. 2022. Silver Nanoparticles From Residual Biomass: Biosynthesis, Characterization And Antimicrobial Activity. Journal of Biotechnology. 343: 47-51
[29] Iravani, S. 2011. Green Synthesis of Metal Nanoparticles Using Plants. Green Chemistry, 13(10): 2638
[30] Mikhailov, O. dan Mikhailova. E. 2019. Elemental Silver Nanoparticles: Biosynthesis And Bio Applications. Materials. 12(19): 3177
[31] Meshram, R., Sakshi, S. dan Utpal, D. 2024. Green Method Synthesis Of Silver Nanoparticles From Ficus Religiosa Plant Leaves Extract And Their Evaluation For Anti-Cancer Activity In Human Lung Adenocarcinoma A549 Cells. Research Journal of Biotechnology
[32] Kastner, C. dan Andreas, F. 2016. Catalytic Reduction of 4-Nitrophenol Using Silver Nanoparticles with Adjustable Activity. ACS Publications. 32(29): 7383-7391
[33] Nguyen T., Tran Quang, Nguyen V., Nguyen M., Le T. 2016. Synthesis, Characterisation, And Effect Of Ph On Degradation Of Dyes Of Copper-Doped TiO2 . J. Exp. Nanosci. 11: 226–238
[34] Apriandanu. Wahyuni. S., Hadisaputro. S., dan Harjono. 2014. Sintesis Nanopartikel Perak Mengunakan Metode Poliol dengan Agen Stabilisator Polivinilalkohol (PVA). Jurnal MIPA. 37(1): 92–104.
[35] Sari, D.N. dan Azmalaeni, R. 2023. Pengaruh Waktu Degradasi Terhadap Fotodegradasi Zat Warna Fenol Red Menggunakan Katalis TiO2-Ag. Jurnal Riset Multidisiplin. 1(3): 100-104
[36] Bagade, A., Praktik, A., Arvind, V., Shankar, R. dan Sangita, N. 2023. Light-induced Photocatalytic Degradation of Methylene Blue observed using Mg-Cu-Cd Ferrite Nanoparticles. Oriental Journal of Chemistry. 39(2): 490-496
[37] Diantariani, P., I., Kartini, A., Kuncaka dan E. T. Wahyuni. 2020. ZnO Incorporated on Natural Zeolite for Photodegradation of Methylene Blue. Rasayan J. Chem. 13(1): 747-756