SINTESIS GRAFENA OKSIDA TEREDUKSI BERBAHAN DASAR CANGKANG BIJI KARET DAN SEKAM PADI SERTA KOMPOSITNYA DENGAN METODE HUMMER TERMODIFIKASI

  • Devi Indah Anwar Program Studi Kimia Fakultas Sains Dan Teknologi, Universitas Muhammadiyah Sukabumi Jl. R Syamsudin, SH NO 50, Cikole, Kota Sukabumi, Jawa Barat 43113
  • Lela Lailatul Khumaisah Program Studi Kimia Fakultas Sains Dan Teknologi, Universitas Muhammadiyah Sukabumi Jl. R Syamsudin, SH NO 50, Cikole, Kota Sukabumi, Jawa Barat 43113
  • Eri Rizki Haryadi Program Studi Kimia Fakultas Sains Dan Teknologi, Universitas Muhammadiyah Sukabumi Jl. R Syamsudin, SH NO 50, Cikole, Kota Sukabumi, Jawa Barat 43113

Abstract

ABSTRAK: Grafena merupakan material dua dimensi monoatomik dari satu lapis grafit  dengan ketebalan sekitar satu atom karbon yang memiliki transparansi optik hingga 97.7%. Kegunaan grafena diantaranya adalah sebagai antibakteri, adsorben, biosensor, dan kapasitor. Metode sintesis grafena sudah banyak dilakukan diantaranya menggunakan metode Chemical Vapor Decomposition (CVD), micromechanical ekfoliation (ME) dan metode Hummer. Namun beberapa metode tersebut memiliki banyak kekurangan yakni waktu yang diperlukan cukup lama, biaya yang relatif tinggi, serta dapat menghasilkan gas beracun seperti NO2 dan N2O4. Alternatif metode yang dapat digunakan adalah metode Hummer termodifikasi dengan mengganti NaNO3 dengan H3PO4 yang akan menghasilkan material grafena berupa grafena oksida tereduksi (rGO). Adapun bahan dasar sintesis grafena yang digunakan pada penelitian ini berasal dari cangkang biji karet (CBK) dan sekam padi (SP). Hal ini dikarenakan CBK mengandung 48.64% selulosa dan 21.60% lignin. Sedangkan 38% selulosa, 18% hemiselulosa, 22% lignin dan 19% silika oksida terkandung pada sekam padi. Tujuan penelitian ini adalah untuk mensintesis grafena oksida tereduksi (rGO) dari cangkang biji karet, sekam padi dan komposit keduanya (KCS), serta mengkarakterisasi rGO yang terbentuk menggunakan X-Ray Diffraction (XRD) dan FTIR.  Berdasarkan hasil analisis XRD diperoleh sudut difraksi 2? dari rGO CBK, SP, dan KCS berturut-turut 23.5, 21.2, dan 24.3° dengan kristalinitas sebesar 17%, 13%, dan 10%.  Hasil tersebut menunjukan sifat material yang amorf. Pada karakterisasi FTIR menunjukkan perubahan struktur pada rGO setelah direduksi dengan berkurangnya atom O serta hilangnya gugus O-H yang terdapat pada rGO.


 


ABSTRACT: Graphene is a monoatomic two-dimensional material made of one layer of graphite with a thickness of about one carbon atom which has an optical transparency of up to 97.7%. The uses of graphene itself include being an antibacterial, adsorbent, biosensor, and capacitor. Many graphene synthesis methods have been carried out, including using the Chemical Vapor Decomposition (CVD) method, micromechanical exfoliation (ME) and the Hummer method. However, some of these methods have many drawbacks, namely the time required is quite long, the cost is relatively high and can produce toxic gases such as NO2 and N2O4. An alternative method that can be used is the modified Hummer method by replacing NaNO3 with H3PO4 and producing graphene material which is formed in the form of reduced graphene oxide (rGO), because it has a very good content. The content in the rubber seed shell is 48.64% cellulose and 21.60% lignin. Meanwhile, 38% cellulose, 18% hemicellulose, 22% lignin and 19% silica oxide are contained in rice husks. The aims of this study were to synthesize graphene from rubber seed shells, rice husks and their composite (KCS), as well as to characterize the rGO formed using X-Ray Diffraction (XRD) and FTIR. Based on the results of XRD analysis, the diffraction angle of 2? from rGO CBK, SP, and KCS was 23.5, 21.2, and 24.3° respectively with crystallinities of 17%, 13%, and 10%. These results indicate the amorphous nature of the material. In FTIR characterization, it shows changes in the structure of rGO after being reduced by reducing O atoms and the loss of O-H groups present in rGO.

Downloads

Download data is not yet available.

References

[1] Habte, A. T., Ayele, D. W., & Hu, M. (2019). Synthesis and Characterization of Reduced Graphene Oxide (rGO) Started from Graphene Oxide (GO) Using the Tour Method with Different Parameters. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/5058163
[2] Trivedi, S., Lobo, K., & Ramakrishna Matte, H. S. S. (2019). Synthesis, properties, and applications of graphene. In Fundamentals and Sensing Applications of 2D Materials (pp. 25–90). Elsevier. https://doi.org/10.1016/B978-0-08-102577-2.00003-8
[3] Sutter, P. W., Flege, J. I., & Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature Materials, 7(5), 406–411. https://doi.org/10.1038/nmat2166
[4] Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Alexei, N., Conrad, M. E. H., First, P. N., & de Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B, 108(52),19912–19916. https://doi.org/10.1021/jp040650f
[5] Honorisal, M. B. P., Huda, N., Partuti, T., & Sholehah, A. (2020). Sintesis dan karakterisasi grafena oksida dari tempurung kelapa dengan metode sonikasi dan hidrotermal. Teknika: Jurnal Sains Dan Teknologi, 16(1), 1. https://doi.org/10.36055/tjst.v16i1.7519
[6] Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. In International Nano Letters (Vol. 6, Issue 2, pp. 65–83). Springer Science and Business Media, LLC. https://doi.org/10.1007/s40089-015-0176-1
[7] Marcano, D. C., Kosynkin, D. v., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
[8] Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98, 163–180. https://doi.org/10.1016/j.jtice.2018.10.028
[9] Moeksin, R., Ade, K., Pratama, A., & Tyani, D. R. (2017). Pembuatan Briket Biorang dari Campuran Limbah Tempurung Kelapa Sawit dan Cangkang Biji Karet. Jurnal Teknik Kimia, 23(3), 146 – 156.
[10] Supriyanto, G., Rukman, N. K., Khoiron Nisa, A., Jannatin, M., Piere, B., Zakki Fahmi, M., & Septya Kusuma, H. (2018). Graphene Oxide from Indonesian Biomass: Synthesis and Characterization. BioResources, 13(3), 1832 – 1840.
[11] Pratama, A., Destiarti, L., & Adhitiyawarman, A. (2021). Sintesis Titanium Oksida/Reduced Graphene Oxide (TiO2/rGO) untuk Fotokatalisis Bahan Pewarna Metilen Biru. POSITRON, 11(1), 31. https://doi.org/10.26418/positron.v11i1.45355
[12] Taufantri, Y., Irdhawati, I., & Asih, I. A. R. A. (2016). Sintesis dan Karakterisasi Grafena dengan Metode Reduksi Grafit Oksida Menggunakan Pereduksi Zn. Jurnal Kimia VALENSI, 2(1), 17–23. https://doi.org/10.15408/jkv.v2i1.2233
[13] Basu, S., & Bhattacharyya, P. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. In Sensors and Actuators, B: Chemical, 173, pp. 1–21. Elsevier B.V. https://doi.org/10.1016/j.snb.2012.07.092
[14] Gobel AP dan Arief A. 2021. Pengaruh Karbonisasi Terhadap Karakteristik Batok Kelapa Berdasarkan Uji Proksimat dan Nilai Kalor. Jurnal Mineral, Energi, dan Lingkungan. Jilid 5. P. 48-54.
[15] Chen, X., Qu, Z., Liu, Z., & Ren, G. (2022). Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS Omega, 7(27), 23503–23510. https://doi.org/10.1021/acsomega.2c01963
[16] Domínguez-Bajo, A., González-Mayorga, A., Guerrero, C. R., Palomares, F. J., García, R., López-Dolado, E., & Serrano, M. C. (2019). Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials, 192, 461–474. https://doi.org/10.1016/j.biomaterials.2018.11.024
[17] Hidayat, A., Setiadji, S., Eko, D., Hadisantoso, P., Kimia, J., Sains, F., Teknologi, D., Gunung, S., & Bandung, D. (n.d.). Sintesis Oksida Grafena Tereduksi (rGO) Dari Arang Tempurung Kelapa (Cocos nucifera), al-Kimiya, 5(2), 68 - 73
[18] Chan, K. Y., Baktash, A., Demir, B., Mayes, E. L. H., Yang, D., Pham, D. Q., Lin, K. te, Mouritz, A. P., Ang, A. S. M., Fox, B., Zhu, B., Lin, H., Jia, B., & Lau, K. T. (2021). Tailoring mechanical and electrical properties of graphene oxide film for structural dielectric capacitors. Journal of Power Sources, 482, 1-11
https://doi.org/10.1016/j.jpowsour.2020.229020
[19] Azizah dan Susanti D. 2015. Pengaruh Variasi Kadar Zn dan Temperatur Hydrotermal Terhadap Struktur dan Nilai Konduktivitas Elektrik Material Graphene. Jurnal Teknik Pomits, 3, 210-214.
[20] Ikhtiar Bakti, A., Amalia Harianto, Y., & Kusuma Nugraha, M. (2022). Karakterisasi Karbon Aktif yang Terbuat dari Tempurung Kelapa dengan Aktivasi Na2CO3 dan Suhu 1000oC Menggunakan Teknik XRD dab SEM-EDX. Chem. Prog, 15(2), 76. https://doi.org/10.35799/cp.15.2.2022.44495
[21] Hidayah, N. M. S., Liu, W. W., Lai, C. W., Noriman, N. Z., Khe, C. S., Hashim, U., & Lee, H. C. (2017). Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings, 1892. https://doi.org/10.1063/1.5005764
[22] Yanti, D. R., Hikmah, U., Prasetyo, A., & Hastuti, E. (2020). The effect of microwave irradiation onreduced graphene oxide from coconut shells. IOP Conference Series: Earth and Environmental Science, 456(1), 1-5 https://doi.org/10.1088/1755-1315/456/1/012008
Published
2023-12-07
How to Cite
ANWAR, Devi Indah; KHUMAISAH, Lela Lailatul; HARYADI, Eri Rizki. SINTESIS GRAFENA OKSIDA TEREDUKSI BERBAHAN DASAR CANGKANG BIJI KARET DAN SEKAM PADI SERTA KOMPOSITNYA DENGAN METODE HUMMER TERMODIFIKASI. CAKRA KIMIA (Indonesian E-Journal of Applied Chemistry), [S.l.], v. 11, n. 2, p. 62 - 70, dec. 2023. ISSN 2302-7274. Available at: <https://ojs.unud.ac.id/index.php/cakra/article/view/110211>. Date accessed: 20 june 2024.