RESISTANCE PROFILE OF BACTERIA ISOLATED FROM LAYING HENS MANURE IN JEMBER REGENCY
Abstract
Antibiotics are becoming more prevalent as environmental pollutants, raising public health concerns. Antibiotics are routinely employed as growth promoters and therapeutic agents in poultry feeds. Because antibiotics are not completely metabolized in chicken body tissues, they are deposited in meat as parent compounds and eventually extruded into the environment via fowl droppings. Organic fertilizers based on chicken litter are typically recycled into the soil to improve the structure and fertility of agricultural land. Chicken litter, a vital source of nutrients for crop productivity, may also carry a variety of human infections that might endanger humans who consume contaminated food or water. A convenience sampling of five places was carried out. Litter samples were collected aseptically. CLSI standards were used to isolate E. coli and Proteus spp. The disc diffusion method was used to determine antibiotic susceptibility. E. coli and Proteus spp. were found in 80% and 60% of the samples. All E. coli and Proteus spp isolates derived from laying hen manure were resistant to sulfamethoxazole, ciprofloxacin, cefixime, tetracycline, amoxiclav, ceftriaxone, and chloramphenicol. However, only 50% and 33% were resistant to azithromycin. All E. coli and Proteus spp. Isolates were multidrug resistant. There was no resistance reported to cefepime or imipenem. Contamination of chicken litter with multidrug-resistant E. coli and Proteus spp. may be an underappreciated source of antimicrobial resistance (AMR) transmission to animals, people, and the environment. This demonstrates the importance of a One Health strategy to AMR surveillance and control in Jember. Monitoring AMR hazards and trends in the chicken litter would be possible with ongoing surveillance.
Downloads
References
Alam, M. U., Rahman, M., Abdullah-Al-Masud, Islam, M. A., Asaduzzaman, M., Sarker, S., Rousham, E., & Unicomb, L. (2019). Human exposure to antimicrobial resistance from poultry production: Assessing hygiene and waste-disposal practices in Bangladesh. International Journal of Hygiene and Environmental Health, 222(8), 1068–1076. https://doi.org/10.1016/j.ijheh.2019.07.007
Ayandele, A. A., Oladipo, E. K., Oyebisi, O., & Kaka, M. O. (2020). Prevalence of multi-antibiotic resistant escherichia coli and klebsiella species obtained from a tertiary medical institution in Oyo State, Nigeria. Qatar Medical Journal, 2020(1), 1–6. https://doi.org/10.5339/QMJ.2020.9
Besung, N. K., Suarjana, G. K., & PG, T. K. (2019). Resistensi Antibiotik Pada Escherichia Coli Yang Diisolasi Dari Ayam Petelur. Buletin Veteriner Udayana, 21, 28–32. https://doi.org/10.24843/bulvet.2018.v11.i01.p05
Brower, C. H., Mandal, S., Hayer, S., Sran, M., Zehra, A., Patel, S. J., Kaur, R., Chatterjee, L., Mishra, S., Das, B. R., Singh, P., Singh, R., Gill, J. P. S., & Laxminarayan, R. (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environmental Health Perspectives, 125(7). https://doi.org/10.1289/EHP292
Chen, Z., & Jiang, X. (2014). Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture (Switzerland), 4(1), 1–29. https://doi.org/10.3390/agriculture4010001
Danilova, N. V., Galitskaya, P. Y., & Selivanovskaya, S. Y. (2018). Antibiotic resistance of microorganisms in agricultural soils in Russia. IOP Conference Series: Earth and Environmental Science, 107(1). https://doi.org/10.1088/1755-1315/107/1/012054
Eggy Hidta Lusandika, I Gusti Ketut Suarjana, I. K. S. (2017). Kualitas Air Peternakan Ayam Broiler Ditinjau dari Jumlah Bakteri Coliform dan Escherichia coli (WATER QUALITY IN BROILER CHICKENS FARMS TOWARDS THE NUMBER OF COLIFORM AND ESCHERICHIA COLI BACTERIA). Buletin Veteriner Udayana, 9(1), 81–86. https://doi.org/10.21531/bulvet.2017.9.1.81
Hardiati, A., Safika, Wibawan, I. W. T., & Pasaribu, F. H. (2021). Phenotypic and Genotypic Study of Antibiotics Resistance Profile in Escherichia coli Isolated from Broilers in Cianjur, Indonesia. Acta VETERINARIA Indonesiana, 9(2), 97–104. https://doi.org/10.29244/avi.9.2.97-104
Indrawati, A., Khoirani, K., Setiyaningsih, S., Affif, U., Safika, S., & Ningrum, S. G. (2021). Detection of Tetracycline Resistance Genes among Escherichia coli Isolated from Layer and Broiler Breeders in West Java, Indonesia. Tropical Animal Science Journal, 44(3), 267–272. https://doi.org/10.5398/tasj.2021.44.3.267
Kilonzo-Nthenge, A., Nahashon, S. N., Chen, F., & Adefope, N. (2008). Prevalence and antimicrobial resistance of pathogenic bacteria in chicken and guinea fowl. Poultry Science, 87(9), 1841–1848. https://doi.org/10.3382/ps.2007-00156
Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19). https://doi.org/10.3390/ijerph16193521
Langata, L. M., Maingi, J. M., Musonye, H. A., Kiiru, J., & Nyamache, A. K. (2019). Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Research Notes, 12(1), 1–6. https://doi.org/10.1186/s13104-019-4068-8
Li, Z., Peng, C., Zhang, G., Shen, Y., Zhang, Y., Liu, C., Liu, M., & Wang, F. (2022). Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poultry Science, 101(4), 101710. https://doi.org/10.1016/j.psj.2022.101710
Muhammad, J., Khan, S., Su, J. Q., Hesham, A. E. L., Ditta, A., Nawab, J., & Ali, A. (2020). Antibiotics in poultry manure and their associated health issues: a systematic review. Journal of Soils and Sediments, 20(1), 486–497. https://doi.org/10.1007/s11368-019-02360-0
Mund, M. D., Khan, U. H., Tahir, U., Mustafa, B. E., & Fayyaz, A. (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. International Journal of Food Properties, 20(7), 1433–1446. https://doi.org/10.1080/10942912.2016.1212874
Ngogang, M. P., Ernest, T., Kariuki, J., Mouiche, M. M. M., Ngogang, J., Wade, A., & van der Sande, M. A. B. (2021). Microbial contamination of chicken litter manure and antimicrobial resistance threat in an urban area setting in Cameroon. Antibiotics, 10(1), 1–12. https://doi.org/10.3390/antibiotics10010020
Niasono, A. B., Latif, H., & Purnawarman, T. (2019). Resistensi Antibiotik Terhadap Bakteri Escherichia coli yang Diisolasi dari Peternakan Ayam Pedaging di Kabupaten Subang, Jawa Barat. Jurnal Veteriner, 20(2), 187–195. https://doi.org/10.19087/jveteriner.2019.20.2.187
Olonitola, O. S., Fahrenfeld, N., & Pruden, A. (2015). Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes. Poultry Science, 94(5), 867–874. https://doi.org/10.3382/ps/pev069
Olopade, A., Bitrus, A. A., Momoh-Zekeri, A. H., & Bamaiyi, P. H. (2022). Multi-drug resistant phenotypes of extended-spectrum β-lactamase (ESBL)-producing E. coli from layer chickens. Iraqi Journal of Veterinary Sciences, 36(4), 945–951. https://doi.org/10.33899/ijvs.2022.132655.2117
Pugazhendhi, A., Theivaraj, S. D., Boovaragamoorthy, G. M., Veeramani, V., Brindhadevi, K., Al-Dhabi, N. A., Arasu, M. V., & Kaliannan, T. (2021). Impact on degradation of antibiotics from poultry litter using Autothermal Thermophilic Aerobic Digestion (ATAD). Saudi Journal of Biological Sciences, 28(1), 988–992. https://doi.org/10.1016/j.sjbs.2020.11.023
Runge, G. A., Blackall, P. J., & Casey, K. D. (2007). Chicken Litter Issues Associated with Sourcing and Use A report for the Rural Industries Research and Development Corporation. 07. http://www.rirdc.gov.au
Sarker, M. S., Mannan, M. S., Ali, M. Y., Bayzid, M., Ahad, A., & Bupasha, Z. B. (2019). Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. Journal of Advanced Veterinary and Animal Research, 6(3), 272–277. https://doi.org/10.5455/javar.2019.f344
Suardana, I. W., Utama, I. H., & Wibowo, M. H. (2014). IDENTIFIKASI Escherichia coli O157:H7 DARI FESES AYAM DAN UJI PROFIL HEMOLISISNYA PADA MEDIA AGAR DARAH. Jurnal Kedokteran Hewan - Indonesian Journal of Veterinary Sciences, 8(1), 1–5. https://doi.org/10.21157/j.ked.hewan.v8i1.1236
Subirats, J., Murray, R., Scott, A., Lau, C. H. F., & Topp, E. (2020). Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. Science of the Total Environment, 746, 141113. https://doi.org/10.1016/j.scitotenv.2020.141113
Wibisono, F. J., Sumiarto, B., Untari, T., Effendi, M. H., Permatasari, D. A., & Witaningrum, A. M. (2020). Short communication: The presence of extended-spectrum beta-lactamase (ESBL) producing escherichia coli on layer chicken farms in Blitar area, Indonesia. Biodiversitas, 21(6), 2667–2671. https://doi.org/10.13057/biodiv/d210638
Yulistiani, R., Praseptiangga, D., Supyani, S., & Sudibya, S. (2019). Comparison of antibiotic resistance pattern among Enteropathogenic bacteria isolated from broiler and backyard chicken meat. Journal of the Indonesian Tropical Animal Agriculture, 44(2), 228–240. https://doi.org/10.14710/jitaa.44.2.228-240
Zhang, Y. J., Hu, H. W., Gou, M., Wang, J. T., Chen, D., & He, J. Z. (2017). Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 231, 1621–1632. https://doi.org/10.1016/j.envpol.2017.09.074