The Effect of Raw Material Composition on the Quality of Briquette Made from Matoa (Pometia pinnata) Leaves Using Organic Adhesive
Abstract
The use of fossil fuels as the primary energy source continues to increase, but their availability in nature is limited. Therefore, efforts are needed to reduce dependence on fossil fuels by using alternative fuels such as briquettes. This study focuses on fabricating briquettes from matoa (Pometia pinnata) leaves using two types of natural adhesives, wheat and tapioca flour, and characterizing them. The composition of raw materials and adhesives was varied with ratios of 50:50, 60:40, 70:30, 80:20, and 90:10 to assess the quality of the briquettes and their calorific values. Briquette fabrication involved several stages: carbonization using an oven, grinding and sieving, adhesives preparation, mixing raw materials with organic binders, molding briquettes into blocks with dimensions of 3.4×3.4×3.2 cm3, and drying. Briquette testing followed the Indonesian National Standard (SNI) No. 01-6235-2000. The results showed that the type of organic adhesives did not significantly affect briquette quality. However, variations in the composition of raw materials and adhesives resulted in differences in briquette quality. The optimal raw material-to-adhesive ratio was 80:20 (matoa leaves: organic adhesive) for wheat flour and tapioca. The briquette tests for the 80:20 (matoa leaves flour) composition showed a moisture content of 6.03%, a density of 0.56 g/cm³, a calorific value of 4083.35 cal/g, a combustion rate of 0.16 g/min, an ash content of 5.60%, and a weight loss at 950 °C of 63.30%. Meanwhile, the briquettes with an 80:20 (matoa leaves) composition had a moisture content of 5.23%, a density of 0.47 g/cm³, a calorific value of 4088.48 cal/g, a combustion rate of 0.15 g/min, an ash content of 6%, and a weight loss at 950 °C of 70.30%.
Downloads
References
[2] S. Sulasminingsih, F. Hafiz, K. Sari, and S. Yuninda, Penggunaan Biomassa sebagai Energi Alternatif Pembangkit Listrik di Wilayah Pedesaan, Journal of Optimization System and Ergonomy Implementation, vol. 1, no. 1, 2023, pp. 42–51.
[3] R. C. Sondakh, Hayatudin, and Ernawati, Perbandingan Biomassa Pertanian Sebagai Energi Terbarukan Briket Arang, Jurnal Ilmiah GIGA, vol. 25, no. 1, 2022, pp. 45–52.
[4] F. Firdaus, Skripsi, Penyimpanan Suhu Rendah Mempertahankan Kualitas Matoa (Pometia pinnata J.R.Forst. & G.Forst.) Kulit Hijau. Program Studi Agroteknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau, 2024.
[5] M. Kayadoe, J. F. Koibur, and H. Warmetan, Komposisi Kimia dan Komponen Serat Berbagai Jenis Pakan Lokal yang Berasal dari Habitat Asal Kuskus dan Penangkaran, Sains Peternakan: Jurnal Penelitian Ilmu Peternakan, vol. 12, no. 1, 2014, pp. 15–19.
[6] B. S. Putra and A. A. Hidayat, Briket Dari Cangkang Kelapa Sawit Menggunakan Perekat Daun Belimbing Wuluh, Jurnal Teknik Terapan, vol. 1, no. 1, 2022, pp. 14–19.
[7] A. Sulistyanto, Karakteristik Pembakaran Biobriket Campuran Batubara Dan Sabut Kelapa, Media Mesin: Majalah Teknik Mesin, vol. 7, no. 2, 2006, pp. 77–84.
[8] Masthura, Analisis Fisis dan Laju Pembakaran Briket Bioarang Dari Bahan Pelepah Pisang, Jurnal Uinsu, vol. 5, no. 1, 2019, pp. 58–66.
[9] Masthura and A. H. Daulay H. W. Desigra, Pengaruh Variasi Perekat Terhadap Nilai Kalor Briket dari Serbuk Daun Teh, Journal of Islamic Science and Technology, vol. 7, no. 1, 2021, pp. 15–23.
[10] Fitriani, M. Anas and Erniwati, Effect of Variation in the Percentage of Durian Skin Charcoal on the Calorific Value and Burning Rate of Briquettes, Indonesian Journal of Physics and its Applications, vol. 1, no. 1, 2021, pp. 14–21.
[11] Saparin and E. S. Wijianti, Pemanfaatan Limbah Organik Untuk Pembuatan Briket Sebagai Energi Alternatif Untuk Kebutuhan Masyarakat di Desa Kulur Ilir Kabupaten Bangka Tengah, Jurnal UBB, vol. 4, no. 2, 2016, pp. 45–52.
[12] A. Kholil, Analisis Fisis Briket Arang Dari Sampah Berbahan Alami Kulit Buah dan Pelepah Salak, Jurnal Ilmiah Teknik Industri, vol. 6, no. 1, 2017, pp. 32–40.
[13] M. Ervando, A. Satmoko, D. Saputro, and A. Budiyono, Karakterisasi Briket Dari Limbah Pengolahan Kayu Sengon Dengan Metode Cetak Panas, Journal of Mechanical Engineering Learning, vol. 2, no. 3, 2013, pp. 58–65.
[14] I. Ardiansyah, A. Y. Putra and Y. Sari, Analisis Nilai Kalor Berbagai Jenis Briket Biomassa Secara Kalorimeter, Journal of Research and Education Chemistry, vol. 4, no. 2, 2022, pp. 120–133.
[15] M. Mafruddin, S. D. Handono, M. Mustofa, E. Mujianto and R. Saputra, Kinerja bom kalorimeter sebagai alat ukur nilai kalor bahan bakar, Turbo : Jurnal Program Studi Teknik Mesin, vol. 11, no. 1, 2022, pp. 125–134.
[16] L. Sulistyaningkarti and B. Utami, Pembuatan Briket Arang Dari Limbah Organik Tongkol Jagung Dengan Menggunakan Variasi Jenis Dan Persentase Perekat, Jurnal Kimia dan Pendidikan Kimia, vol. 2, no. 1, 2017, pp. 43–53.
[17] A. B. Biantoro and W. Widayat, Pengaruh Tekanan Kompaksi dan Perekat terhadap Karakteristik Briket Limbah Daun Cengkeh, Jurnal Inovasi Mesin, vol. 3, no. 2, 2021, pp.18–28.
[18] K. Abidin, T. J. Saputra and R. P. Dewi, Pengaruh Variasi Konsentrasi Perekat Tepung Tapioka Dan Bubur Kertas Terhadap Analisis Proksimat, Nilai Kalor, dan Laju Pembakaran Briket Campuran Tempurung Dan Serabut Kelapa, Jurnal Universitas Tidar, vol. 3, no. 1, 2022, .
[19] S. M. Ridjayanti, W. Hidayat, R. A. Bazenet, I. S. Banuwa and M. Riniarti, Pengaruh Variasi Kadar Perekat Tapioka Terhadap Karakteristik Briket Arang Limbah Kayu Sengon (Falcataria mollucana), ULIN: Jurnal Hutan Tropis, vol. 6, no. 1, 2022, pp. 5–11.
[20] A. Nugraha and M. N. Ramadhan, Karakteristik Briket Limbah Arang Kayu Alaban Berperekat Tapioka, Multitek Indonesia: Jurnal Ilmiah, vol. 16, no. 2, 2022, pp. 9–20.
[21] N. Tumbel, A. K. Makalalag and S. Manurung, Proses Pengolahan Arang Tempurung Kelapa Menggunakan Tungku Pembakaran Termodifikasi, Jurnal Penelitian Teknologi Industri, vol. 11, no. 2, 2019, pp. 83–92.