Study of proteolytic bacteria isolated from the blowfly (Chrysomya megacephala)

  • Ernin Hidayati Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Jalan Majapahit No. 62 Mataram, Nusa Tenggara Barat, Indonesia - 83125
  • Ika Nurhimaya Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Jalan Majapahit No. 62 Mataram, Nusa Tenggara Barat, Indonesia - 83125
  • Nisful Mahdi Balai Laboratorium Kesehatan, Pengujian dan Kalibrasi, Jalan Catur Warga No. 9 Mataram, Nusa Tenggara Barat, Indonesia – 83121
  • Sarkono Sarkono Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Jalan Majapahit No. 62 Mataram, Nusa Tenggara Barat, Indonesia - 83125


Blowfly (Chrysomya megacephala) is an insect that has an important ecological role,  one of which is as a decomposer. Blowfly is often found around food and garbage, especially those protein-rich. The perch of the blowfly on foods needs to be aware because it causes the material to spoil or stale faster. It is suspected that the bacteria present in the fly's body play a role in the material decomposition process. This research aims to study proteolytic bacteria isolated from the body of the blowfly. The sample of blowfly was taken from the dumping site at Kebon Kongok, West Lombok, Indonesia. The samples were placed into Brain Heart Infusion Broth. Bacteria from the body of the blowfly were isolated using Nutrient Agar. The proteolytic activity of the bacterial isolates was detected from the formation of a clear zone on the Skim Milk Agar medium using the spot and well diffusion method. The isolates were characterized by using Gram staining and a series of biochemical tests. There were four isolates of proteolytic bacteria found in the body of the blowfly, namely LH1, LH2, LH3, and LH4. The LH2 showed the best catalytic activity with an average clear zone diameter of 25.5 mm after 24 hours of incubation at 37oC. LH2 is a Gram negative, rod-shaped and short chain, motile, and aerobic. Based on the biochemical test, LH2 is able to utilize several types of sugars such as arabinose, sucrose, maltose, and mannitol, able to oxidize the amino acid tryptophan, and able to convert urea into ammonia. The results of this study provide information that LH2 contributes to the decomposition process and also potential as a pathogen.


Download data is not yet available.


Aprianti ATD, Hidayati E, Faturrahman, Jupri A. 2020. Kemampuan antibakteri dari isolat bakteri pada tubuh lalat hijau (Chrysomya megacephala) asal tempat pembuangan sampah akhir (TPA) Kebon Kongok, Lombok Barat. Bioma 5(1): 79-87.
Arias-Robledo G, Stevens JR, Wall R. 2019. Spatial and temporal habitat partitioning by calliphorid blowflies. Med. Vet. Entomol. 33(2): 228-237.
Badenhorst R. Villet MH. 2018. The uses of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) in forensic entomology. Forensic Sci. Res. 3(1): 2-15.
Bhattacherjee R, Mandal S, Banerjee S, Saha KK, Sarkar J, Banerjee D, Mandal NC. 2021. Structural-genetic insight and optimization of protease production from a novel strain of Aeromonas veronii CMF, a gut isolate of Chrysomya megacephala. Arch. Microbiol. 203: 2961-2977.
Castillo JJ, Couture G, Bacalzo NP, Chen Y, Chin EL, Blecksmith SE, Bouzid YY, Vainberg Y, Masarweh C, Zhou Q. 2022. The Development of the Davis Food Glycopedia - A Glycan encyclopedia of food. Nutrients 14, 1639.
Junqueira ACM, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan BNV, Costea PI, Linz B, Purbojati RW, Paulo DF, Gaultier NE, Subramanian P, Hasan NA, Colwell RR, Bork P, Azeredo-Espin ALM, Bryant DA, Schuster SC. 2017. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Scientific Reports 7: 16324.
Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, Kaca W. 2012. Bacterial Urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 13: 789-806.
Menkes RI. 2017. Standar Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Untuk Vektor Dan Binatang Pembawa Penyakit Serta Pengendaliannya. Peraturan Menteri Kesehatan Republik Indonesia Nomor 50 Tahun 2017: 36-37.
Mobley RLT, Hausinger RP. 1989. Microbial Ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 53(1): 85-108.
Monyama MC, Onyiche ET, Taioe MO, Nkhebenyane JS, Thekisoe OMM. 2022. Bacterial pathogens identified from houseflies in different human and animal settings: A systematic review and meta-analysis. Vet. Med. Sci. 8: 827-844.
Park R, Dzialo MC, Spaepen S, Nsabimana D, Gielens G. Devriese H, Crauwels S, Tito RY, Raes J, Lievens B, Verstrepen KJ. 2019. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 7:147
Sepahy AA, Jabalameli L. 2011. Effect of culture conditions on the production of an extracellular protease by Bacillus sp. isolated from soil sample of Lavizan Jungle Park. Enzyme Res.
Tomberlin JK, Crippen TL, Tarone AM, Chaudhury MFB, Singh B, Cammack JA, Meisel RP. 2017. A Review of bacterial interactions with blow flies (Diptera: Calliphoridae) of medical, veterinary, and forensic importance. Ann. Entomol. Soc. Am. 110(1): 19-36.
Yuan F, Yin S, Xu Y, Xiang L, Wang H, Li Z, Fan K, Pan G. 2021. The Richness and diversity of catalases in bacteria. Front. Microbiol. 12: 645477.
Zhang Y-Z, Zhang W-X, Chen X-L. 2020. Mechanisms for induction of microbial extracellular proteases in response to exterior proteins. Appl. Environ. Microbiol. 86: e01036-20.
How to Cite
HIDAYATI, Ernin et al. Study of proteolytic bacteria isolated from the blowfly (Chrysomya megacephala). Jurnal Biologi Udayana, [S.l.], v. 26, n. 2, p. 260-268, dec. 2022. ISSN 2599-2856. Available at: <>. Date accessed: 07 june 2023. doi: