Kapang endofit sebagai sumber senyawa aktif antivirus yang menjanjikan: Suatu Kajian Pustaka
Abstract
Infeksi virus masih menjadi masalah di seluruh negara di dunia. Vaksinasi dan penggunaan obat-obatan antivirus masih terus dilakukan sebagai upaya untuk menanggulangi infeksi virus. Kemunculan serotipe virus baru yang resisten terhadap obat antivirus yang ada telah meningkatkan usaha pencarian senyawa antivirus baru dari alam. Kapang endofit merupakan salah satu sumber senyawa antivirus yang sangat melimpah di alam. Beberapa senyawa antivirus yang aktif terhadap beberapa jenis virus penyebab infeksi pada manusia telah diisolasi dari kapang endofit. Senyawa emodin dari kapang endofit Aspergillus versicolor, aspergillipeptides D dari Aspergillus sp., dan altertoxin V dari Alternaria tenuissima masing-masing memiliki aktivitas antivirus terhadap virus hepatitis C, herpes, dan HIV melalui pengujian secara in vitro. Sedangkan senyawa katekin dari Annulohypoxylon ilanense, norquinadoline A dari Cladosporium sp., dan isochaetochromin D1 dari Fusarium sp. memiliki aktivitas penghambatan terhadap SARS-CoV-2 secara in silico. Pengembangan senyawa aktif antivirus dari kapang endofit perlu ditingkatkan. Pengembangan meliputi pemilihan metode isolasi senyawa aktif yang optimal, penelitian lebih lanjut tentang mekanisme kerja senyawa antivirus, pengujian secara in vivo hingga uji pre klinis dan klinis. Pengembangan senyawa antivirus dari kapang endofit yang optimal diharapkan akan menghasilkan obat antivirus baru yang lebih efektif dalam pengobatan terhadap infeksi virus.
Downloads
References
Ai HL, Zhang LM, Chen YP, Zi SH, Xiang H, Zhao DK, Shen Y. 2012. Two new compounds from an endophytic fungus Alternaria solani. J. Asian Nat. Prod. Res.14(12): 1144-1148.
Avendano L, Palomino M, Carmen L. 2003. Surveillance for respiratory syncytial virus in infants hospitalized for acute lower respiratory infection in Chile (1989 to 2000). J. Clin. Microbiol. 41: 4879-4882.
Bashyal BP, Wellensiek BP, Ramakrishnan R, Faeth SH, Ahmad N, Gunatilaka AAL. 2014. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg. Med. Chem. 22(21): 6112–6116.
Bergmann S, Schümann J, Sherlach K, Lange C, Brakhage AA, Hertweck C. 2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3: 213–217.
Borst EM, Kleine-Albers J, Gabaev I, Babic M, Wagner K, Binz A, Degenhardt I, Kalesse M, Jonjic S, Bauerfeind R, Messerle M. 2013. The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J. Virol. 87(3): 1720–1732.
Boyer PL, Sarafianos SG, Clark PK, Arnold E, Hughes SH. 2006. Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance?. PLoS Pathog. 2:e10.
Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11: 21–32.
Bunyapaiboonsri T, Yoiprommarat S, Srikitikulchai P, Srichomthong K, Lumyong S. 2010. Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J. Nat. Prod. 73: 55–59.
Burns D, Mazzola E, Reynolds W. 2019. The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products. Nat. Prod. Rep. 36. Doi: 10.1039/C9NP00007K.
Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C. 2012. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun. 3: 913.
Cheng MJ, Wu MD, Chen JJ, Hsieh SY, Yuan GF, Chen IS, Chang CW. 2013. Secondary metabolites from the endophytic fungus of Annulohypoxylon ilanense. Chem. Nat. Compd. 49: 523-525.
Cichewicz RH. 2010. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 27: 11–22.
Ciesla L, Moaddel R. 2016. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat. Prod. Rep. 33(10): 1131–1145.
Clercq ED. 2002. Strategies in the design of antiviral drugs. Nat. Rev. 1: 13–25.
De Palma AM, Vliegen I, De Clercq E, Neyts J. 2008. Selective inhibitors of picornavirus replication. Med. Res. Rev. 28: 823–884.
Falsey AR, Walsh EE. 2000. Respiratory syncytial virus infection in adults. Clin. Microbiol. Rev. 13(3): 371-384.
Fang W, Lin X, Zhou X, Wan J, Lu X, Yang B, Ai W, Lin J, Zhang T, Tu Z, Liu Y. 2014. Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Med. Chem. Commun. 5(6): 679-832.
Gargano M, van Griensven LJLD, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI. 2017. Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 151: 548–565.
Harvey AL, Edrada-Ebel R, Quinn RJ. 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14: 111–129.
Hawas UW, Al-Farawati R. 2017. Chemical constituents and antiviral activity from marine endophytic fungi from red sea alga Padina pavonica. J. Chem. Soc. Pak. 39(3): 478-483.
Hawas UW, El-Beih AA, El-Halawany AM. 2012. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch. Pharm. Res. 35(10): 1749-1756.
Hawas UW, El-Halawany AM, Ahmed EF. 2013. Hepatitis C virus NS3-NS4A protease inhibitors from the endophytic Penicillium chrysogenum isolated from the red alga Liagora viscida. Z. Naturforsch. 68c: 355 – 366.
He JW, Chen GD, Gao H, Yang F, Li XX, Peng T, Guo LD, Yao XS. 2012. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia. 83: 1087–1091.
Irshad M, Gupta P, Irshad K. 2018. Molecular targeting of antiviral drugs used against hepatitis C virus infection. Hepatoma Res. 4: 23.
James CPK. 2014. Enterovirus, Parechovirus, and Saffold Virus Infection. J.D. In: Cherry GJ, Harrison SL, Kaplan WJ, Steinbach, Hotez PJ (eds) Textbook of Pediatric Infectious Diseases. 7th ed. Elsevier Saunders: Philadelphia, 2051-2108.
Jassim SA, Naji MA. 2003. Novel antiviral agents: a medicinal plant perspective. J. Appl. Microbiol. 95: 412–427.
Jena AB, Kanungo N, Nayak V, Chainy G, Dandapat J. 2020. Catechin and curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: insights from Computational study and implication for intervention (preprint). Research Square. Doi: 10.21203/rs.3.rs-22057/v1.
Jia YL, Guan FF, Ma J, Wang CY, Shao CL. 2015a. Pestalotiolide A, a new antiviral phthalide derivative from a soft coral-derived fungus Pestalotiopsis sp. Nat. Prod. Sci. 21(4): 227-230.
Jia YL, Wei MY, Chen HY, Guan FF, Wang CY, Shao CL. 2015b. (+)- and (−)-pestaloxazine A, a pair of antiviral enantiomeric alkaloid dimers with a symmetric spiro[oxazinane piperazinedione] skeleton from Pestalotiopsis sp. Org. Lett. 17(17): 4216-4219.
Kusari S, Singh S, Jayabaskaran C. 2014. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 32: 297–303.
Li Y, Liu D, Cen S, Proksch P, Lin W. 2014. Isoindolinone-type alkaloids from the sponge-derived fungus Stachybotrys chartarum. Tetrahedron. 70: 7010e7015.
Liang TM, Fang YW, Zheng JY, Shao C.L. 2018. Secondary metabolites isolated from the gorgonian-derived fungus Aspergillus ruber and their antiviral activity. Chem. Nat. Compd. 54(3): 559-561.
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. 2018. Antiviral agents from fungi: diversity, mechanisms and potential applications. Front. Microbiol. 9:2325.
Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KX, Wu SH. 2019. A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem. Lett. 29: 75–78.
Ma X, Li L, Zhu T, Ba M, Li G, Gu Q, Guo Y, Li D. 2013. Phenylspirodrimanes with anti-HIV activity from the sponge-derived fungus Stachybotrys chartarum MXH-X73. J. Nat. Prod. 76(12): 2298-2306.
Ma X, Nong XH, Ren Z, Wang J, Liang X, Wang L, Qi SH. 2017. Antiviral peptides from marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Tetrahedron Lett. 58: 1151–1155.
Modi VS, Siddique SS, Prajapati P, Basuri T, Patel DR. 2016. A technique expanding the limits of structure elucidation: LC-NMR. Int J Pharm Sci Rev Res. 39. 148-155.
Mustafa M, Illzam EM, Muniandy RK, Sharifah AM, Nang MK, Ramesh B. 2016. Herpes simplex virus infections, pathophysiology and management. IOSR JDMS. 15(7): 85-91.
Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. 2010. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 9(11): 1097–1105.
Palese P. 2004. Influenza: old and new threats. Nat. Med. 10: S828–S87.
Pang X, Zhao JY, Fang XM, Zhang T, Zhang DW, Liu HY, Su J, Cen S, Yu LY. 2017. Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and their anti-HIV activities. J. Nat. Prod. 80: 2595−2601.
Pica N, Palese P. 2013. Toward a universal influenza virus: prospects and challenges. Annu. Rev. Med. 64: 189-202.
Quimque MT, Notarte K, Fernandez RA, Mendoza M, Liman RA, Lim JA, Pilapil L, Ong JK, Pastrana A, Macabeo A. 2020. Not One, But Five: Virtual Screening-Driven Drug Discovery of SARS-CoV2 Enzyme Inhibitors Targeting Viral Attachment, Replication and Post-Translational Infection Mechanisms (preprint). ChemRxiv. Doi: 10.26434/chemrxiv.12170424.v1.
Selim KA, Elkhateeb WA, Tawila AM, El-Beih AA, Abdel-Rahman TM, El-Diwany AI, Ahmed EF. 2018. Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation. 4: 49.
Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67: 491–502.
Sun JF, Lin X, Zhou XF, Wan J, Zhang T, Yang B, Yang XW, Tu Z, Liu Y. 2014. Pestalols A–E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J. Antibiot. 67: 451–457.
Tan R, Zou W. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448–459.
Tian YQ, Lin XP, Wang Z, Zhou XF, Qin XC, Kaliyaperumal K, Zhang TY, Tu ZC, Liu Y. 2016. Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules. 21: e34.
Uzor P, Odimegwu D, Ebrahim W, Osadebe P, Nwodo N, Okoye F, Liu Z, Proksch P. 2016. Anti-respiratory syncytial virus compounds from two endophytic fungi isolated from Nigerian medicinal plants. J. Drug Res. 66: 527-532.
Wang J, Wei X, Lu X, Xu F, Wan J, Lin X, Zhou X, Liao S, Yang B, Tu Z, Liu Y. 2014. Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.) Druce. Tetrahedron. 70: 9695e9701.
Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE. 2006. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA. 296: 964-973.
Yan J, Qi N, Wang S, Gadhave K, Yang S. 2014. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin. Curr. microbiol. 69: 740-744.
Zhang D, Tao X, Chen R, Liu J, Li L, Fang X, Yu L, Dai J. 2015. Pericoannosin A, a polyketide synthase−nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org. Lett. 17(17): 4304-4307.
Zhang SP, Huang R, Li FF, Wei HX, Fang XW, Xie XS, Lin DG, Wu SH, He J. 2016. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia. 112: 85-89.
Zhou S, Gao Y, Chan E. 2005. Clinical trials for medicinal mushrooms: experience with Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Lingzhi Mushroom). Int. J. Med. Mushrooms. 7: 111–118.
Zuckerman AJ. 1996. Hepatitis Viruses. In: Baron S (ed) Medical Microbiology. 4th edition. Chapter 70. University of Texas Medical at Galveston: Texas, 1-31.