Biokompatibilitas scaffold sutera asal Bombyx mori ukuran pori 100µm terhadap adipose-derived stem cells (ADSCs) yang dikultur pada berbagai medium pertumbuhan

  • Imam Rosadi HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia
  • Karina Karina HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia; Klinik Hayandra, Yayasan Hayandra Peduli, Jakarta, Indonesia; Biomedik, Universitas Indonesia, Jakarta, Indonesia
  • Komang A. Wahyuningsih HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia; Klinik Hayandra, Yayasan Hayandra Peduli, Jakarta, Indonesia; Histologi, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
  • Anggraini Barlian Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi Bandung, Bandung, Indonesia
  • Iis Rosliana HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia
  • Tias Widyastuti HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia
  • Siti Sobariah HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia
  • Irsyah Afini HayandraLab, Yayasan Hayandra Peduli, Jakarta, Indonesia

Abstract

Rekayasa jaringan terdiri dari 3 komponen utama yaitu sel, nutrisi, dan scaffold. Penggunaan sel punca asal jaringan lemak (adipose-derived stem cells/ ADSCs) telah banyak dikembangkan sebagai sumber sel dalam teknologi rekayasa jaringan. Medium yang digunakan dalam mendukung pertumbuhan sel diantaranya medium yang mengandung serum seperti fetal bovine serum (FBS), kombinasi FBS dan L-ascorbic acid 2-phosphate (LAA) atau platelet-rich plasma (PRP). Pada penelitian ini, sutera asal Bombyx mori diproduksi menjadi scaffold sutera ukuran pori 100µm kemudian ADSCs dikultur diatas scaffold dalam medium mengandung 10% FBS, 10% FBS-LAA atau 10% PRP. Uji yang dilakukan adalah uji pertumbuhan ADSCs yang dikultur pada polystyrene kemudian uji biokompabilitas scaffold sutera pada ADSCs dalam medium mengandung 10% FBS, 10% FBS-LAA dan 10% PRP. Hasilnya menunjukkan bahwa ketiga kelompok ADSCs dalam variasi medium yang mengandung FBS, FBS-LAA atau PRP dapat mendukung pertumbuhan sel. Ketiga medium tersebut juga tidak berbeda bermakna antar kelompok pada uji biokompabilitas ADSCs yang dikultur pada scaffold sutera. Berdasarkan hasil tersebut, scaffold sutera berpotensi sebagai substrat ADSCs yang dapat dikembangkan sebagai teknologi rekayasa jaringan.

Downloads

Download data is not yet available.

References

Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. 2003. Silk-based biomaterials. Biomaterials 24(3): 401-416.
Chen T, Zhou Y, Tan WS. 2009. Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells. Cell Bio. & Toxic 25(6): 573-586.
Han KS, Song, JE, Tripathy N, Kim H, Moon BM, Park CH, Khang G. 2015. Effect of pore sizes of silk scaffolds for cartilage tissue engineering. Macromol. Res. 23(12): 1091-1097.
Hata RI, Senoo H. 1989. L‐ascorbic acid 2‐phosphate stimulates collagen accumulation, cell proliferation, and formation of a three‐dimensional tissuelike substance by skin fibroblasts. J. Cellular Phy. 138(1): 8-16.
Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, Meinel L. 2006. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 12(10): 2729-2738.
Howard D, Buttery LD, Shakesheff KM, Roberts SJ. 2008. Tissue engineering: strategies, stem cells and scaffolds. J. Anatomy 213(1): 66-72.
Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G. 2004. Engineering cartilage‐like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotech. & Bioeng. 88(3): 379-391.
O'brien FJ. 2011. Biomaterials & scaffolds for tissue engineering. Materials today 14(3):88-95.
Rosadi I, Karina K, Rosliana I, Sobariah S, Afini I, Widyastuti T, Barlian A. 2019. The Effect of Human Platelet-Rich Plasma and L-Ascorbic Acid on Morphology, Proliferation, and Chondrogenesis Ability towards Human Adipose-Derived Stem Cells. Mol. Cell. Biomed. Sci. 3(1): 26-33.
Schipper BM, Marra KG, Zhang W. 2008. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 60: 538 –544.
Suryani D, Pawitan JA, Lilianty J, Purwoko RY, Liem IK, Damayanti L. 2013. Comparison of fetal bovine serum and platelet-rich plasma on human lipoaspirate-derived mesenchymal stem cell proliferation. Med. J. Indonesia. 22(3): 146-151.
Takamizawa S, Maehata Y, Imai K, Senoo H, Sato S, Hata RI. 2004. Effects of ascorbic acid and ascorbic acid 2‐phosphate, a long‐acting vitamin C derivative, on the proliferation and differentiation of human osteoblast‐like cells. Cell Bio. Intern. 28(4): 255-265.
Vepari C, Kaplan DL. 2007. Silk as a biomaterial. Progress in Polymer Sci. 32(8-9): 991-1007.
Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. 2006. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36): 6064-6082.
Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL. 2005. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26(34): 7082-7094.
Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL. 2011. Effect of processing on silk‐based biomaterials: Reproducibility and biocompatibility. J. Biomed. Materials Res. Part B: Applied Biomaterials 99(1): 89-101.
Zuk PA. 2010. The Adipose-derived Stem Cell: Looking Back and Looking Ahead. Mol Bio Cell. 21: 1783-1787.
Published
2020-06-29
How to Cite
ROSADI, Imam et al. Biokompatibilitas scaffold sutera asal Bombyx mori ukuran pori 100µm terhadap adipose-derived stem cells (ADSCs) yang dikultur pada berbagai medium pertumbuhan. Jurnal Biologi Udayana, [S.l.], v. 24, n. 1, p. 7-15, june 2020. ISSN 2599-2856. Available at: <https://ojs.unud.ac.id/index.php/bio/article/view/61355>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.24843/JBIOUNUD.2020.v24.i01.p02.