Antiviral compounds in marine algae, soft coral and sponge: a systematic review

  • Tri Wahyu Setyaningrum Universitas Mataram
  • Dining Aidil Candri Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Mataram, Indonesia
  • Mursal Ghazali Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Mataram, Indonesia
  • Eka Sunarwidhi Prasedya Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Mataram, Indonesia
  • Faturrahman Faturrahman Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Mataram, Indonesia
  • Rozikin Rozikin Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram, Mataram, Indonesia

Abstract

Diseases caused by viruses are always evolving due to the mutating nature of viruses and are still a threat to the health world today. One of the strategies utilized by scientists to address this challenge is the identification of bioactive compounds with antiviral properties. This article presents an overview of various marine organisms that contain antiviral compounds, including microalgae, macroalgae, soft coral, and marine sponge. This review article employs a systematic review methodology, utilizing Proquest, MDPI, and Science Direct data search bases from 2013 to 2024. The search terms employed were "Antiviral Compounds," "Marine antiviral," "Algae antiviral," "Soft Coral antiviral," and "Sponge antiviral." A total of 440 articles were identified through the use of the specified keywords. Following the screening process, 31 articles were deemed relevant for inclusion in the review. From the 31 selected articles, six articles discussed on microalgae, 11 articles for macroalgae, eight for soft corals, and six for sponges contain antiviral compounds with diverse anti-viral mechanisms. The antiviral compounds identified in the organisms discussed in this article are fatty acid group, lutein, carrageenan, fucoidan, polyphenol group, terpenoid group, sesterpenes, asteltoxin, and others.

Downloads

Download data is not yet available.

References

Abdelkarem FM, Nafady AM, Allam AE, Mostafa MAH, Al Haidari RA, Hassan HA, Zaki MEA, Assaf HK, Kamel MR, Zidan SAH, Sayed AM, Shimizu K. 2022. A Comprehensive In Silico Study of New Metabolites from Heteroxenia fuscescens with SARS-CoV-2 Inhibitory Activity. Molecules 27(21): 1–14. DOI: 10.3390/molecules27217369
Al-Harrasi A, Avula SK, Csuk R, Das B. 2021. Cembranoids from Boswellia species. Phytochemistry 191: 112897. DOI: 10.1016/j.phytochem.2021.112897
Ambrosino A, Chianese A, Zannella C, Piccolella S, Pacifico S, Giugliano R, Franci G, De Natale A, Pollio A, Pinto G, De Filippis A, Galdiero M. 2023. Galdieria sulphuraria: An Extremophilic Alga as a Source of Antiviral Bioactive Compounds. Marine Drugs 21(7): 383. DOI: 10.3390/md21070383
Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S, Herzog C, Liu J, Harville TO. 2021. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE 16(9): 1–14. DOI: 10.1371/journal.pone.0257016
Baldisserotto C, Gentili V, Rizzo R, Di Donna C, Ardondi L, Maietti A, Pancaldi S. 2023. Characterization of Neochloris oleoabundans under Different Cultivation Modes and First Results on Bioactivity of Its Extracts against HCoV-229E Virus. Plants 12(1): 1-23. DOI: 10.3390/plants12010026
Candri DA, Hakimi B, Ahyadi H, Suana IW, Prasedya ES, Ambarwati K, Mardiati AU. 2023. Condition of Coral Diversity in Kuta Mandalika Coastal, Central Lombok Regency. Jurnal Biologi Tropis 23(2): 15–26. DOI: 10.29303/jbt.v23i2.5627
Chappell K, Stoermer M, Fairlie D, Young P. 2008. West Nile Virus NS2B/NS3 Protease As An Antiviral Target. Current Medicinal Chemistry 15(27): 2771–2784. DOI: 10.2174/092986708786242804
Cheng SY, Wang SK, Duh CY. 2014. Secocrassumol, a seco-cembranoid from the dongsha atoll soft coral lobophytum crassum. Marine Drugs 12(12): 6028–6037. DOI: 10.3390/md12126028
Cheng SY, Wang SK, Hsieh MK, Duh CY. 2015. Polyoxygenated cembrane diterpenoids from the soft coral Sarcophyton ehrenbergi. International Journal of Molecular Sciences 16(3): 6140–6152. DOI: 10.3390/ijms16036140
Chiu YH, Chan YL, Li TL, Wu CJ. 2012. Inhibition of Japanese Encephalitis Virus Infection by the Sulfated Polysaccharide Extracts from Ulva lactuca. Marine Biotechnology 14(4): 468–478. DOI: 10.1007/s10126-011-9428-x
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. 2022. Chapter Two - Advances in the design of new types of inhaled medicines. In: Witty DR and Cox B (eds) Elsevier, 93–162. DOI: https://doi.org/10.1016/bs.pmch.2022.04.001
El-Bilawy EH, Al-Mansori ANA, Soliman SA, Alotibi FO, Al-Askar AA, Arishi AA, Sabry AEN, Elsharkawy MM, Heflish AA, Behiry SI, Abdelkhalek A. 2022. Antifungal, Antiviral, and HPLC Analysis of Phenolic and Flavonoid Compounds of Amphiroa anceps Extract. Sustainability (Switzerland) 14(19): 12253. DOI: 10.3390/su141912253
Elhady SS, Abdelhameed RFA, Malatani RT, Alahdal AM, Bogari HA, Almalki AJ, Mohammad KA, Ahmed SA, Khedr AIM, Darwish KM. 2021. Molecular docking and dynamics simulation study of hyrtios erectus isolated scalarane sesterterpenes as potential sars-cov-2 dual target inhibitors. Biology 10(5): 389. DOI: 10.3390/biology10050389
Gupta DK, Kaur P, Leong ST, Tan LT, Prinsep MR, Chu JJH. 2014. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Marine Drugs 12(1): 115–127. DOI: 10.3390/md12010115
Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, Khalifa SAM, Alhumaydhi FA, Alrumaihi F, Abidi SH, Allemailem KS, Efferth T, Soliman ME, Paré PW, El-Seedi HR, Hegazy MEF. 2021. Blue biotechnology: Computational screening of sarcophyton cembranoid diterpenes for sars-cov-2 main protease inhibition. Marine Drugs 19(7):391. DOI: 10.3390/md19070391
Jahajeeah D, Ranghoo-Sanmukhiya M, Schäfer G. 2023. Metabolic Profiling, Antiviral Activity and the Microbiome of Some Mauritian Soft Corals. Marine Drugs 21(11): 574. DOI: 10.3390/md21110574
Jousselin C, Pliego-cort H, Damour A, Garcia M, Bodet C, Robledo D, Bourgougnon N, Nicolas L. 2023. Anti-SARS-CoV-2 Activity of Polysaccharides Extracted from Halymenia floresii and Solieria chordalis (Rhodophyta). Marine Drugs 21(6):348. DOI: 10.3390/md21060348.
Kang SM, Tark D, Song BM, Lee GH, Yang JH, Han HJ, Yim SK. 2022. Evaluation of Antiviral Effect against SARS-CoV-2 Propagation by Crude Polysaccharides from Seaweed and Abalone Viscera In Vitro. Marine Drugs 20(5): 296. DOI: 10.3390/md20050296
Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, Hamid Khan A, Saleem I, Shamim S, Malik A. 2021. A review: Mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology 35: 1-12. DOI: 10.1177/20587384211002621
Kim E, Kang N, Heo S, Oh J, Lee S, Cha S, Kim W, Heo S. 2023. Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species. Mar. Drugs 21(7): 369. DOI: 10.3390/md21070369
Krylova N V., Gorbach VI, Iunikhina O V., Pott AB, Glazunov VP, Kravchenko AO, Shchelkanov MY, Yermak IM. 2022. Antiherpetic Activity of Carrageenan Complex with Echinochrome A and Its Liposomal Form. International Journal of Molecular Sciences 23(24): 15754. DOI: 10.3390/ijms232415754
Morán-Santibañez K, Peña-Hernández MA, Cruz-Suárez LE, Ricque-Marie D, Skouta R, Vasquez AH, Rodríguez-Padilla C, Trejo-Avila LM. 2018. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses 10(9): 1–14. DOI: 10.3390/v10090465
Nguyen TD, MacNevin G, Ro DK. 2012. De novo synthesis of high-value plant sesquiterpenoids in yeast. Methods in Enzymology. Elsevier Inc. DOI: 10.1016/B978-0-12-404634-4.00013-9
O’Rourke A, Kremb S, Bader TM, Helfer M, Schmitt-Kopplin P, Gerwick WH, Brack-Werner R, Voolstra CR. 2016. Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency virus 1 (HIV-1). Marine Drugs 14(2): 1–10. DOI: 10.3390/md14020028
O’Rourke A, Kremb S, Duggan BM, Sioud S, Kharbatia N, Raji M, Emwas AH, Gerwick WH, Voolstra CR. 2018. Identification of a 3-alkylpyridinium compound from the red sea sponge Amphimedon chloros with in vitro inhibitory activity against the West Nile Virus NS3 protease. Molecules 23(6): 1472. DOI: 10.3390/molecules23061472
Pokharkar O, Lakshmanan H, Zyryanov G, Tsurkan M. 2022. In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis. Marine Drugs 20(3): 215. DOI: 10.3390/md20030215
Pokharkar O, Lakshmanan H, Zyryanov G V., Tsurkan M V. 2023. Antiviral Potential of Antillogorgia americana and elisabethae Natural Products against nsp16–nsp10 Complex, nsp13, and nsp14 Proteins of SARS-CoV-2: An In Silico Investigation. Microbiology Research 14(3): 993–1019. DOI: 10.3390/microbiolres14030068
Prasetiya FS, Destiarani W, Nuwarda RF, Rohmatulloh FG, Natalia W, Novianti MT, Ramdani T, Agung MUK, Arsad S, Sari LA, Pitriani P, Suryanti S, Gumilar G, Mouget JL, Yusuf M. 2023. The nanomolar affinity of C-phycocyanin from virtual screening of microalgal bioactive as potential ACE2 inhibitor for COVID-19 therapy. Journal of King Saud University - Science 35(3): 102533. DOI: 10.1016/j.jksus.2022.102533
Qin GF, Tang XL, Sun YT, Luo XC, Zhang J, Van Ofwegen L, Sung PJ, Li PL, Li GQ. 2018. Terpenoids from the soft coral Sinularia sp. Collected in Yongxing Island. Marine Drugs 16(4): 1–15. DOI: 10.3390/md16040127
Ren G, Xu L, Zhao J, Shao Y, Lin Y, Li L, Liu Q, Lu T, Zhang Q. 2022. Antiviral Activity of Crude Polysaccharide Derived from Seaweed against IHNV and IPNV In Vitro. Viruses 14(9): 1–13. DOI: 10.3390/v14092080
Ruocco N, Nuzzo G, Federico S, Esposito R, Gallo C, Ziaco M, Manzo E, Fontana A, Bertolino M, Zagami G, Zupo V, Sansone C, Costantini M. 2024. Potential of Polar Lipids Isolated from the Marine Sponge Haliclona (Halichoclona) vansoesti against Melanoma. International Journal of Molecular Sciences 25(13): 1–17. DOI: 10.3390/ijms25137418
Saksono H. 2013. Ekonomi Biru: Solusi Pembangunan Daerah Berciri Kepulauan Studi Kasus Kabupaten Kepulauan Anambas. Jurnal Bina Praja 05(01): 01–12. DOI: 10.21787/jbp.05.2013.01-12
Setyaningrum TW, Budiman A, Suyono EA. 2023. Cobalamin and Thiamine Effect on Microalgae Biomass Production in the Glagah Consortium. Journal of Tropical Biodiversity and Biotechnology 8(3): 1-9. DOI: 10.22146/jtbb.81949
Setz C, Große M, Fröba M, Auth J, Rauch P, Herrmann A, Cordsmeier A, Ensser A, Schindler M, Morokutti-Kurz M, Graf P, Engel B, Prieschl-Grassauer E, Grassauer A, Schubert U. 2023. Iota-Carrageenan Inhibits Replication of the SARS-CoV-2 Variants of Concern Omicron BA.1, BA.2 and BA.5. Nutraceuticals 3(3): 315–328. DOI: 10.3390/nutraceuticals3030025
Tian YQ, Lin XP, Wang Z, Zhou XF, Qin XC, Kaliyaperumal K, Zhang TY, Tu ZC, Liu Y. 2016. Asteltoxins with antiviral activities from the marine sponge-Derived fungus aspergillus sp. Scsio xws02f40. Molecules 21(1): 1–10. DOI: 10.3390/molecules21010034
Tseng YJ, Lee YS, Wang SK, Sheu JH, Duh CY. 2013. Parathyrsoidins A-D, four new sesquiterpenoids from the soft coral paralemnalia thyrsoides. Marine Drugs 11(7): 2501–2509. DOI: 10.3390/md11072501
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2021. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology 19(3): 155–170. DOI: 10.1038/s41579-020-00468-6
Yamashita A, Fujimoto Y, Tamaki M, Setiawan A, Tanaka T, Okuyama-Dobashi K, Kasai H, Watashi K, Wakita T, Toyama M, Baba M, De Voogd NJ, Maekawa S, Enomoto N, Tanaka J, Moriishi K. 2015. Identification of antiviral agents targeting hepatitis B virus promoter from extracts of Indonesian marine organisms by a novel cell-based screening assay. Marine Drugs 13(11): 6759–6773. DOI: 10.3390/md13116759
Zhang W, Oda T, Yu Q, Jin JO. 2015. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Marine Drugs 13(3): 1084–1104. DOI: 10.3390/md13031084
Published
2025-01-05
How to Cite
SETYANINGRUM, Tri Wahyu et al. Antiviral compounds in marine algae, soft coral and sponge: a systematic review. Jurnal Biologi Udayana, [S.l.], v. 28, n. 2, p. 286-297, jan. 2025. ISSN 2599-2856. Available at: <https://ojs.unud.ac.id/index.php/bio/article/view/120058>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.24843/JBIOUNUD.2024.v28.i02.p10.