Air Teraktivasi Plasma: Mekanisme activasi dan Sifat Fisiko-kimia
Abstract
Teknologi plasma dikembangkan akhir-akhir ini karena sifatnya yang unik dan dapat dimanfaatkan dalam berbagai tujuan di berbagai bidang. Plasma merupakan gas yang molekul-molekul penyusunnya terdisosiasi sehingga mempunya sifat reaktif. Namun karena sifatnya itu pula plasma harus digunakan saat plasma dibangkitkan. Mengaktivasi air dengan plasma ternyata mengakibatkan perubahan air menjadi lebih reaktif sehingga dapat dimanfaatkan untuk tujuan yang serupa dengan plasma dalam bentuk gas. Kajian literatur ini menyajikan tentang teknologi aktivasi air dengan plasma dari sudut pandang mekanisme pembangkitan dan reaksi-reaksi yang menyertainya. Artikel ini disajikan untuk memperkenalkan teknologi plasma yang saat ini masih minim dikaji di Indonesia.
Downloads
References
Dobrynin, D., Friedman, G., Fridman, A., & Starikovskiy, A. (2011). Inactivation of bacteria using dc corona discharge: Role of ions and humidity. New Journal of Physics, 13. https://doi.org/10.1088/1367-2630/13/10/103033
Ferrer-Sueta, G., & Radi, R. (2009). Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals. ACS Chemical Biology, 4(3), 161–177. https://doi.org/10.1021/cb800279q
Imiay, J. A., Chin, S. M., & Linnt, S. (1986). Toxic DNA Damage by Hydrogen Peroxide Through the Fenton Reaction in Vivo and in Vitro. Science, 240, 2–5.
Keyer, K., Gort, A. S., & Imlay, J. A. (1995). Superoxide and the production of oxidative DNA damage. Journal of Bacteriology, 177(23), 6782–6790. https://doi.org/10.1128/jb.177.23.6782-6790.1995
Khlyustova, A., Labay, C., Machala, Z., Ginebra, M. P., & Canal, C. (2019). Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Frontiers of Chemical Science and Engineering, 13(2), 238–252. https://doi.org/10.1007/s11705-019-1801-8
Liu, D. X., Liu, Z. C., Chen, C., Yang, A. J., Li, D., Rong, M. Z., Chen, H. L., & Kong, M. G. (2016a). Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Scientific Reports, 6(December 2015), 1–11. https://doi.org/10.1038/srep23737
Liu, D. X., Liu, Z. C., Chen, C., Yang, A. J., Li, D., Rong, M. Z., Chen, H. L., & Kong, M. G. (2016b). Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Scientific Reports, 6(December 2015), 1–11. https://doi.org/10.1038/srep23737
Lukes, P., Brisset, J. L., & Locke, B. R. (2012). Biological Effects of Electrical Discharge Plasma in Water and in Gas-Liquid Environments. Plasma Chemistry and Catalysis in Gases and Liquids, 309–352. https://doi.org/10.1002/9783527649525.ch8
Lukes, P., Dolezalova, E., Sisrova, I., & Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O 2 and HNO2. Plasma Sources Science and Technology, 23(1). https://doi.org/10.1088/0963-0252/23/1/015019
Lymar, S. V., & Hurst, J. K. (1996). Carbon dioxide: Physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chemical Research in Toxicology, 9(5), 845–850. https://doi.org/10.1021/tx960046z
Majou, D., & Christieans, S. (2018). Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Science, 145(June), 273–284. https://doi.org/10.1016/j.meatsci.2018.06.013
Murakami, T., Niemi, K., Gans, T., O’Connell, D., & Graham, W. G. (2013). Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities. Plasma Sources Science and Technology, 22(1), 1–29. https://doi.org/10.1088/0963-0252/22/1/015003
Park, J. Y., Park, S., Choe, W., Yong, H. I., Jo, C., & Kim, K. (2017). Plasma-Functionalized Solution: A Potent Antimicrobial Agent for Biomedical Applications from Antibacterial Therapeutics to Biomaterial Surface Engineering. ACS Applied Materials and Interfaces, 9(50), 43470–43477. https://doi.org/10.1021/acsami.7b14276
Perinban, S., Orsat, V., & Raghavan, V. (2019). Nonthermal Plasma–Liquid Interactions in Food Processing: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1985–2008. https://doi.org/10.1111/1541-4337.12503
Pignata, C., D’Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. Journal of Applied Microbiology, 122(6), 1438–1455. https://doi.org/10.1111/jam.13412
Shainsky, N., Dobrynin, D., Ercan, U., Joshi, S., Fridman, G., Friedman, G., & Fridman, A. (2010). Effect of liquid modified by non-equilibrium atmospheric pressure plasmas on bacteria inactivation rates. 115020, 1. https://doi.org/10.1109/plasma.2010.5533900
Singh, S., Chauhan, A. K., & Ranjan, R. (2021). Cold Plasma - Novel method of Food Preservation : A Review. Indian Food Industry Magazine, July, 1–12.
Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., & Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Processes and Polymers, 9(2), 157–164. https://doi.org/10.1002/ppap.201100041
Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V. P. (2018). Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. In Trends in Food Science and Technology (Vol. 77, pp. 21–31). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.05.007
Van Durme, J., Nikiforov, A., Vandamme, J., Leys, C., & De Winne, A. (2014). Accelerated lipid oxidation using non-thermal plasma technology: Evaluation of volatile compounds. Food Research International, 62, 868–876. https://doi.org/10.1016/j.foodres.2014.04.043
Verlackt, C. C. W., Van Boxem, W., & Bogaerts, A. (2018a). Transport and accumulation of plasma generated species in aqueous solution. Physical Chemistry Chemical Physics, 20(10), 6845–6859. https://doi.org/10.1039/C7CP07593F
Verlackt, C. C. W., Van Boxem, W., & Bogaerts, A. (2018b). Transport and accumulation of plasma generated species in aqueous solution. Physical Chemistry Chemical Physics, 20(10), 6845–6859. https://doi.org/10.1039/C7CP07593F
Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C., & Bai, Y. (2019). Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Science and Emerging Technologies, 52, 49–56. https://doi.org/10.1016/j.ifset.2018.11.012
Xu, Z., Shen, J., Zhang, Z., Ma, J., Ma, R., Zhao, Y., Sun, Q., Qian, S., Zhang, H., Ding, L., Cheng, C., Chu, P. K., & Xia, W. (2015). Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on staphylococcus aureus biofilms. Plasma Processes and Polymers, 12(8), 827–835. https://doi.org/10.1002/ppap.201500006
Zhou, R., Zhou, R., Prasad, K., Fang, Z., Speight, R., Bazaka, K., & Ostrikov, K. (2018). Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chemistry, 20(23), 5276–5284. https://doi.org/10.1039/c8gc02800a
Zhou, R., Zhou, R., Wang, P., Xian, Y., Mai-Prochnow, A., Lu, X., Cullen, P. J., Ostrikov, K. (Ken), & Bazaka, K. (2020). Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 53(30), 303001. https://doi.org/10.1088/1361-6463/ab81cf