Status of Battery in Indonesia to Support Application of Solar PV with Energy Storage

  • I Putu Gede Iwan Dwipayana Udayana University
  • I Nyoman Satya Kumara Udayana University
  • I Nyoman Setiawan Udayana University

Abstract

Indonesia plans to build solar PV plants to reach 6500 MW capacity by 2025. One of the solar PV applications is systems with battery storage systems. In this system, the battery is an important component of the solar PV system as it stores the energy for use when the sun is unavailable. This article reviews the status of batteries in Indonesia to support the proliferation of solar PV applications. The objective is to compile a battery database for solar PV applications. The database provides insight into technology and the availability of batteries. The database consists of 361 batteries of various technologies such as FLA, VRLA, VRLA gel, VRLA AGM, and Lithium-ion. The most widely available is the VRLA gel. In terms of voltage, batteries are available at 2 to 12 volts and with capacity from 1 to 3000 Ah. The availability of batteries shows that this field is ready to support the development of solar PV with energy storage although the field of battery recycling or its waste management requires more attention.

Downloads

Download data is not yet available.

References

Anonim, 2017. Perpres Republik Indonesia Nomor 22 Tahun 2017 Tentang Rencana Umum Energi Nasional.
[2] Aditya Nugraha, I.M., Giriantari, I.A.D., Kumara, I.N.S. 2013. Studi Dampak Ekonomi dan Sosial PLTS Pedesaan Terhadap Masyarakat Desa Ban Kubu Karangasem. Prosiding Conference on Smart-Green Technology in Electrical and Information Systems. Bali 14-15 November 2013. A-010
[3] Putra, B.A., Sukerayasa, I.W., Partha, C.G.I. 2020. Perancangan Sistem Pompa Air dengan Memanfaatkan PLTS 20 kWp Desa Tianyar Tengah. E-journal Spektrum. Vol 7, No. 1.Hal 54-61.
[4] Wicaksana, M.R., Giriantari, I.A.D., Kumara, I.N.S. 2019. Unjuk Kerja Pembangkit Listrik Tenaga Surya Rooftop 158 kWp pada Kantor Gubernur Bali. E-journal Spektrum. Vol. 6, No. 3. Hal 107-113.
[5] Gunawan, I.N., Kumara, I.N.S., Irawati, R. 2019. Unjuk Kerja Pembangkit Listrik Tenaga Surya 26,4 kWp pada Sistem Smart Microgrid UNUD. E-journal Spektrum. Vol 6, No. 3. Hal 1-9.
[6] Kumara, K.V., Kumara, I.N.S., Ariastina, W.G. 2018. Tinjauan Terhadap PLTS 24 KW Atap Gedung PT Indonesia Power Pesanggaran Bali. E-journal Spektrum. Vol 5, No. 2. Hal 26-35.
[7] Syahni, D. 2016. Pengembangan Listrik Tenaga Surya Masih Terkendala, Mengapa ?. Retrieved August 13, 2020. From : https://www.mongabay.co.id.
[8] Budiman, A.H. 2013. Kajian Roadmap Pengembangan Energy Storage untuk Smart Grid System. Pusat Teknologi Konversi Energi. Balai Pengakajian dan.Penerapan Teknologi.
[9] Linden, David, and Thomas B. Reddy. 2002. Handbook of Batteries 3 Ed. Amerika Serikat: The McGraw-Hills Companies, Inc.
[10] Kosasih, D. P. 2018. Pengaruh Variasi Larutan Elektrolit pada Accumulator Terhadap Arus dan Tegangan. Dosen Bidang Teknik Material Program Studi Teknik Mesin, Universitas Subang. ISSN: 23-55-9241. Hal 33-45.
[11] PT. Century Batteries Indonesia. 2015. Incoe Battery Catalogue. Retrieved July 11, 2020. From: aki.incoe-astra.com.
[12] Iron Edison. 2016. Lithium Batteries for Solar PV. Retrieved July 12, 2020. From: ecorenovator.org.
[13] Afif, M. T., Pratiwi, I. A. P. 2015. Analisis Perbandingan Baterai Lithium ion, Lithium Polymer, Lead Acid, dan Nickel-Metal Hybride Pada Penggunaan Mobil Listrik- Review. Jurnal Rekayasa Mesin. Vol. 6 No. 2. Hal 95-99.
[14] Trojan Battery Company. 2018. Selecting the Proper Lead-Acid Technology Retrieved August 11, 2020. From: www.trojanbattery.com.
[15] Simon Roberts, Solar Electricity: A Practical Guide to Designing and Installing Small Photovoltaic System, Cambridge, UK: Prentice-Hall International Ltd., 1991.
[16] M.R. Patel. Wind and Solar Power System. Washington, DC: CRC Press., 1984.
[17] T. Maskvart dan L. Castaner. Practical Handbook of Photovoltaic. UK: Elsevier Science, Ltd., 2003
[18] Asian Development Bank. 2018. Handbook on Battery Energy Storage System.
[19] D. Rastler, “Electricity Energy Storage Technology Options”, Final Report-EPRI, California-USA, December 2010.
[20] Thorbergsson, Egill, Vaciav Knap, Maciej Swierczynski, Daniel Stroe, and Remus Teodorescu. 2013. Primary Frequency Regulation with Li-on Battery Based Energy Storage System. Evaluation and Comparison of Different Control Strategies. Intelec 2013. 35th International Telecommunications Energy Conference. Hamburg, Germany 13-17 October.
[21] Buchman, I. 2001. Batteries in a Portable World : A Handbook on Rechargeable Batteries for Non- Engineers.
[22] Albert, W. Ng., 2018. Solar Energy-Knowledge Base. Net Solar.
[23] Badan Standarisasi Nasional. 2009. Baterai Dikenai SNI Wajib. Retrieved August 29, 2020. From : https://bsn.go.id/main/berita_det/935/Baterai-dikenai-SNI-wajib
[24] Anonim. 2016. Peraturan Menteri Perindustrian Republik Indonesia Nomor 82 Tahun 2016 Tentang Lembaga Penilaian Kesesuaian Dalam Rangka Pemberlakuan dan Pengawasan Standar Nasional Indonesia Baterai Primer Secara Wajib.
[25] International Tin Association, 2017. Lead Acid Batteries Impact on Future tin Use. Technical Report
[26] Astriani, Y., Kurniasari, A., Priandana, E. R., Aryono, N. A. 2018. Penyeimbangan State of Charge Baterai Lead Acid pada Prototipe Battery Management System. Ketenagalistrikan dan Energi Terbarukan, Vol. 17, No. 1 Juni 2018. Hal 43-52.
[27] Victron Energy. Gel and AGM Batteries. Retrieved July 22, 2020. From: www.victronenergy.com
[28] PT. Nippress, Tbk. 2016. NS Accelerate Catalogue. Retrieved August 15, 2020. From: www.nipress.com
[29] Solar Surya Indotama. 2013. Battery Hoppecke-Solar Power. Retrieved August 18, 2020. From : solarsuryaindotama.co.id.
[30] Hudaya, Chairul. 2011. Peranan Riset Baterai Sekunder dalam Mendukung Penyediaan Energi Bersih di Indoonesia 2025. Proceeding Olimpiade Karya Tulis Inovatif (OKTI) 2011. Korean Institute of Science and Technology (KIST).
[31] AAF Statistics. 2019. ASEAN Automotive Federation. Retrieved September 5, 2020. From: www.asean-autofed.com
[32] Nickel Data Sheet-Mineral Commodity Summaries 2020. US Geological Survey. Retrieved September 5, 2020. From: en.wikipedia.org
[33] Ayuningtyas, D. 2019. 4 Pabrik Baterai Mobil Listrik Dibangun, Siapa Untung ?. Retrieved September 4, 2020. From: www.cnbcindonesia.com.
[34] Pinterest. 2018. Peta Indonesia. Retrieved September 4, 2020. From : id.pinterest.com
[35] Anonim, 1999. Peraturan Pemerintah Republik Indonesia No. 18 Tahun 1999 Tentang : Pengelolaan Limbah Bahan Berbahaya dan Beracun.
[36] Salomone, Roberta., Mondello, Fabio., Lanuzza, Francesco., Micali, Giuseppe. 2005. An Ecobalance of a Recycling Plant for Spent Lead-Acid Batteries. Environmental Management Vol. 35, No. 2, pp. 206-219.
[37] Anonim, 2019. Peraturan Presiden Republik Indonesia Nomor 55 Tahun 2019 Tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) untuk Transportasi Jalan.
[38] Anonim, 1995. Keputusan Menteri Negara Lingkungan Hidup. Nomor : KEP-51/MENLH/10/1995. Tentang Baku Mutu Limbah Cair Bagi Kegiatan Industri.
[39] Yen, Ivan Chang., 2002, Basel Caribbean Sub-Regional Centre/Cariri-Uwi Project on Used Lead-Acid Batteries., Final Report, St. Agustine: Ministry of the Environment of Trinidad and Tobago.
[40] Respati, B., Damanhuri, E. 2009. Persebaran Pelaku Daur Ulang Informal Aki Bekas Kendaraan Bermotor di Kota Bandung.
[41] Wilson, David C., Araba, Adebisi O., Chinwah, Kaine, Cheeseman, Christoper R., 2009, Building Recycling Rates Through the Informal Sector., Waste Management Vol. 29, pp. 629-635.
[42] Wilson, David C., Velis, C., Cheeseman, C., 2006. Role of Informal Sector Recycling in Waste Management in Developing Countries. Habitat International 30, 797-808.
[43] Utomo, Y. S. 2013. Uji Performansi Baterai Deep Cycle Sebagai Komponen Sistem PJU LED Tenaga Surya. Conference : Prosiding Seminar Nasional Fisika 2013 Pusat Penelitian Fisika LIPI Serpong. Hal 556-563 ISSN: 2088-4176.
[44] Juharah, W.D. 2013. Analisis Kelistrikan yang Dihasilkan Limbah Buah dan Sayuran Sebagai Energi Alternatif Bio-Baterai. Skripsi. Jurusan Fisika, Universitas Jember.
[45] Yulianti, E., Saputri, R.D., Jodi, H., Salam, R. 2013. Pembuatan Bahan Polimer Elektrolit Padat Berbasis Nanokomposit Kitosin Montmorillonite untuk Aplikasi Baterai. Jurnal Kimia Kemasan, Vol. 35 No. 2. Hal 77-83.
[46] Utomo, Y. S. 2015. Uji Kinerja Baterai Deep Cycle Pada Sistem Pembangkit Listrik Tenaga Surya Photovoltaik. Conference : Prosiding Seminar Nasional Fisika dan Aplikasinya. Program Studi Fisika-FMIPA Universitas Padjajaran Jatinangor. Hal FE8-FE18 ISSN: 2477-0477.
[47] Alfith. 2015. Konfigurasi Baterai Pada Pembangkit Renewable Energy. Jurnal Teknik Elektro ITP Vol. 4 No. 1. Hal 46-50.
[48] Farizy, A. F. 2016. Desain Sistem Monitoring State of Charge Baterai pada Charging Station Mobil Listrik Berbasis Fuzzy Logic dengan Mempertimbangkan Temperatur. Tugas Akhir. Teknik Elektro Institut Teknologi Sepuluh Nopember.
[49] Amri, B. 2016. Photovoltaic Pulse Charge untuk Konfigurasi Penyimpanan Energi Melalui Konsep Charge Management Pada Sistem PV Standalone. Tesis Jurusan Teknik Elektro Institut Sepuluh November.
[50] Pangemanan, G. A. 2017. Kajian Eksperimen Discharge Test pada Baterai 12 V yang Dihubungkan dengan Motor DC Feedback Tipe No. 63-110 di Laboratorium Listrik dan Otomasi Kapal. Skripsi. Departemen Teknik Sistem Perkapalan Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember.
[51] Simanjuntak, T. B. O., Mangindaan, G. M. C., Pakiding, M. 2017. E-journal Teknik Elektro dan Komputer Vol. 6 No. 2. Hal 63-68. ISSN: 2301-8402
[52] Rizkyanto, C. 2018. Analisis Pengaruh Temperatur Terhadap Ketahanan Kontainer Baterai untuk Meningkatkan Service Life pada Free Maintenance Free Battery. Tugas Akhir. Departemen Teknik Mesin, Institut Teknologi Sepuluh Nopember.
[53] Taufik, A., Saputra, R. H., Huda, A.M.M. 2019. Estimasi State of Charge Baterai Regulated Lead Acid Deep-Cycle 12V dengan Metode Column Counting. Journal of Industrial Engineering and Operation Management. Vol. 2 No. 1. ISSN: 2620-8184.
[54] Zainuri, A., Wibawa, U., Rusli, M., Hasanah, R.N., Harahap, R.A. 2019. VRLA Battery State of Health Estimation Based on Charging Time. TELKOMNIKA, Vol.17, No. 3. Hal 1577-1583. ISSN: 1693-6930.
[55] Mufidah, I. N., 2019. Estimasi State of Charge pada Baterai VRLA (Valve-Regulated Lead Acid) dengan Metodde Polynomial Regression. Skripsi. Jurusan Teknik Elektro Universitas Jember.
[56] Sugeng, B., Saputra, R. H. 2019. Estimasi State of Charge Menggunakan Simulink pada Baterai Pembangkit Listrik Tenaga Surya. Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, Vol. 3 No. 1. Hal 1-8.
[57] Akhinov, I. A., Handaya, D. 2019. Sistem Kontrol Pengisian Baterai pada Penerangan Jalan Umum Berbasis Solar Cell. Jurnal Teknologi Rekayasa Vol. 4, No. 1. Hal 93-98. p-ISSN: 2548-737X. e-ISSN: 2548-8678.
[58] Rochmawati, I. 2020. Peramalan Kapasitas Baterai Asam Timbal dengan Metode Extreme Learning Machine. Skripsi. Jurusan Teknik Elektro Universitas Jember.
Published
2021-02-27
How to Cite
DWIPAYANA, I Putu Gede Iwan; KUMARA, I Nyoman Satya; SETIAWAN, I Nyoman. Status of Battery in Indonesia to Support Application of Solar PV with Energy Storage. Journal of Electrical, Electronics and Informatics, [S.l.], v. 5, n. 1, p. 29-40, feb. 2021. ISSN 2622-0393. Available at: <https://ojs.unud.ac.id/index.php/JEEI/article/view/68830>. Date accessed: 27 sep. 2021. doi: https://doi.org/10.24843/JEEI.2021.v05.i01.p06.