Peningkatan Kualitas Sinyal Photoplethysmography (PPG) melalui Pendekatan Pra-pemrosesan Multitahap
Abstract
Photoplethysmography (PPG) is a non-invasive technique for measuring various physiological parameters, including blood glucose levels. However, PPG signals are often affected by noise and artefacts that reduce the accuracy of analysis and prediction. Therefore, an effective noise filtering method is needed to make the signal quality and ready for feature extraction for blood glucose estimation.
This study offers a solution to the problem of noise in PPG signals through the application of appropriate pre-processing methods. This study aims to select quality PPG signals through three pre-processing methods: detrend, smoothing, and 0.5-5 Hz bandpass filter. The effectiveness of the three methods was evaluated through ADF test to measure the stationarity of the signal, frequency spectrum analysis to observe the distribution of frequency components, and SNR test to assess the signal to noise ratio. Based on the analysis of 67 data samples, the p-value <0.05 was obtained, indicating that the signal has reached a stationary condition. In addition, the average test statistic of men is higher than that of women, indicating that men's signals are more stationary after detrend. Meanwhile, 36 samples (54%) had SNR ? 20 dB indicating that more than half of the data were of good enough quality for further analysis.
The results show that multi-stage pre-processing improves the quality of PPG signals, validated through quantitative tests of stationarity and SNR values. Thus, the preprocessed and improved quality PPG signals are considered feasible for use in the development of estimation models for various physiological parameters, including blood glucose levels.
Downloads
References
[2] S. K. Singha and M. Ahmad, “Noninvasive Heart Rate and Blood Glucose Level Estimation Using Photoplethysmography,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., pp. 151–155, 2021, doi: 10.1109/ICICT4SD50815.2021.9396849.
[3] R. Agung and A. Suryawan, “Perancangan Dan Realisasi Penghitung Frekuensi Detak Jantung Berbasis Mikrokontroler AT89S52,” vol. 6, no. 2, pp. 13–19, 2007.
[4] M. Elgendi, “On the Analysis of Photoplethysmogram Signal,” Curr. Cardiol. Rev., vol. 8, no. c, pp. 14–25, 2012.
[5] D. Sutarya, “Sistem Monitoring Kadar Gula Darah, Kolestrol dan Asam Urat secara Non Invasive menggunakan Sensor GY-MAX 30100,” J. JOULE, vol. Vol 1, no. 25–34, pp. 1907–2546, 2021, [Online]. Available: http://journal.univpancasila.ac.id/index.php/joule/
[6] F. B. Reguig, “Photoplethysmogram signal analysis for detecting vital physiological parameters: An evaluating study,” 2016 Int. Symp. Signal, Image, Video Commun. ISIVC 2016, pp. 167–173, 2017, doi: 10.1109/ISIVC.2016.7893981.
[7] E. Susana, K. Ramli, P. D. Purnamasari, and N. H. Apriantoro, “Non-Invasive Classification of Blood Glucose Level Based on Photoplethysmography Using Time–Frequency Analysis,” Inf., vol. 14, no. 3, 2023, doi: 10.3390/info14030145.
[8] A. K. Bhoi and S. Sarkar, “Noise Cancellation of PPG Signals using Wavelet Transformation,” Int. J. Electron. Commun. Comput. Eng., vol. 3, no. 5, pp. 2278–4209, 2012.
[9] P. Madona, “Akuisisi Data Sinyal Photoplethysmograph (PPG) Menggunakan Photodioda,” J. Elektro dan Mesin Terap., vol. 2, no. 2, pp. 32–41, 2016, doi: 10.35143/elementer.v2i2.187.
[10] E. Mejía-Mejía, J. Allen, K. Budidha, C. El-Hajj, P. A. Kyriacou, and P. H. Charlton, Photoplethysmography signal processing and synthesis. 2021. doi: 10.1016/B978-0-12-823374-0.00015-3.
[11] Y. Chen, D. Li, Y. Li, X. Ma, and J. Wei, “Use moving average filter to reduce noises in wearable PPG during continuous monitoring,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 181 LNICST, pp. 193–203, 2017, doi: 10.1007/978-3-319-49655-9_26.
[12] A. Luke, S. Shaji, and K. A. U. Menon, “Motion Artifact Removal and Feature Extraction from PPG Signals Using Efficient Signal Processing Algorithms,” 2018 Int. Conf. Adv. Comput. Commun. Informatics, pp. 624–630, 2018.
[13] A. A. M. A. Istri Iswari, I. M. O. Widyantara, and R. S. Hartati, “Penerapan Wavelet Daubechies pada Teknik Estimasi Gerak Bilateral,” Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, p. 143, 2022, doi: 10.24843/mite.2022.v21i01.p19.
[14] A. P. Study, “An In-Ear PPG-Based Blood Glucose Monitor :,” 2023.
[15] Amalia Yunia Rahmawati, PPG Signal Analysis An Introduction Using MATLAB, no. July. 2021.
[16] S. N. Nampoothiri, R. K. Pathinarupothi, M. V. Ramesh, and K. A. U. Menon, “Comparison of Infrared and Red Photoplethysmography signals for Non-calibrated Non-invasive Blood Glucose Monitoring,” 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. June, pp. 1568–1571, 2020, doi: 10.1109/TENSYMP50017.2020.9230743.
[17] M. Höll, K. Kiyono, and H. Kantz, “Theoretical foundation of detrending methods for fluctuation analysis such as detrended fluctuation analysis and detrending moving average,” Phys. Rev. E, vol. 99, no. 3, pp. 1–20, 2019, doi: 10.1103/PhysRevE.99.033305.
[18] A. González-López and P. A. Campos-Morcillo, “Efficient detrending of uniform images for accurate determination of the noise power spectrum at low frequencies,” Phys. Med. Biol., vol. 64, no. 10, 2019, doi: 10.1088/1361-6560/ab1a68.
[19] A. Al Havis and L. Fitria, “Filtering Sinyal Menggunakan Band Pass Filter,” J. SIFO Mikroskil, vol. 19, no. 2, pp. 37–48, 2018, doi: 10.55601/jsm.v19i2.594.
[20] Y. V. Pantoja-Pacheco and J. Yáñez-Mendiola, “Method for the Statistical Analysis of the Signals Generated by an Acquisition Card for Pulse Measurement,” Mathematics, vol. 12, no. 6, pp. 1–24, 2024, doi: 10.3390/math12060923.
[21] J. Rumiński, “Reliability of pulse measurements in videoplethysmography,” Metrol. Meas. Syst., vol. 23, no. 3, pp. 359–371, 2016, doi: 10.1515/mms-2016-0040.
[22] J. Park, H. S. Seok, S. S. Kim, and H. Shin, “Photoplethysmogram Analysis and Applications: An Integrative Review,” Front. Physiol., vol. 12, no. March, pp. 1–23, 2022, doi: 10.3389/fphys.2021.808451.
[23] G. Ladeira, N. Marwan, J. B. Destro-Filho, C. Davi Ramos, and G. Lima, “Frequency spectrum recurrence analysis,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-77903-4.
[24] M. S. Ummah, “Ekstraksi Fitur Alat Musik Tradisional Menggunakan Transformasi Kosinus Diskrit,” Sustain., vol. 11, no. 1, pp. 1–14, 2019.
[25] A. D. Haq, I. Santoso, and Z. A. A. Macrina, “Estimasi Signal To Noise Ratio (SNR) Menggunakan Metode Korelasi,” Transient, vol. 1, no. 4, pp. 1–8, 2012.
[26] B. Mishra and N. S. Nirala, “A Survey on Denoising Techniques of PPG Signal,” 2020 IEEE Int. Conf. Innov. Technol. INOCON 2020, pp. 1–8, 2020, doi: 10.1109/INOCON50539.2020.9298358.
[27] I. A. Majeed, S. Jos, R. Arora, K. Choi, and S. Bae, “Motion Artifact Removal of Photoplethysmogram (PPG) Signal,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 560037, pp. 5576–5580, 2019, doi: 10.1109/EMBC.2019.8857131.
[28] A. S. Karavaev et al., “Low-frequency component of photoplethysmogram reflects the autonomic control of blood pressure,” Biophys. J., vol. 120, no. 13, pp. 2657–2664, 2021, doi: 10.1016/j.bpj.2021.05.020.
[29] M. A. B. Reguig and N. Labdelli, “Blood glucose prediction using non-invasive optical system based on photoplethysmography,” Int. J. Electr. Comput. Eng., vol. 14, no. 5, pp. 5200–5208, 2024, doi: 10.11591/ijece.v14i5.pp5200-5208.
[30] N. I. F. M. Lahil et al., “Non-Invasive Blood Pressure and Heart Rate Sensing Using Photoplethysmogram Sensor,” Proceeding - 2021 IEEE 17th Int. Colloq. Signal Process. Its Appl. CSPA 2021, no. March, pp. 156–160, 2021, doi: 10.1109/CSPA52141.2021.9377302.


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License