UTILIZATION OF NA2O/LAPINDO MUD NANOCATALYST IN THE TRANSESTERIFICATION REACTION OF USED COOKING OIL INTO BIODIESEL

  • N. N. Hapsari Universitas Negeri Surabaya
  • S. Samik Universitas Negeri Surabaya

Abstract

          Penelitian ini mendemonstrasikan preparasi Lumpur Lapindo yang diimpregnasi dengan NaOH untuk digunakan sebagai katalis heterogen dalam reaksi transesterifikasi minyak jelantah menjadi biodiesel. Katalis dibuat dengan cara impregnasi NaOH pada Lumpur Lapindo, kemudian dikalsinasi pada suhu 550 °C selama 3 jam. Setelah itu, dilanjutkan proses ball milling dengan kecepatan 4000 rpm selama 1 jam untuk mengubahnya menjadi nanokatalis Na2O/LM. Penggunaan nanokatalis ini meningkatkan luas permukaan yang memungkinkan interaksi lebih efektif dengan reaktan, sehingga mempercepat proses katalisis. Karakterisasi nanokatalis dilakukan menggunakan XRF, XRD, FTIR, dan PSA. Mekanisme reaksi transesterifikasi melibatkan minyak jelantah dan metanol dengan rasio 1:9, nanokatalis Na2O/LM 5 %wt, reaksi ini berlangsung selama 2 jam pada suhu 65°C. Penggunaan nanokatalis Na2O(0)/LM, Na2O(20)/LM, Na2O(40)/LM dan Na2O(60)/LM menghasilkan yield berturut-turut 77,36%; 83,27%; 86,51%; dan 96,68%. Uji kualitas biodiesel mencakup bilangan asam, kadar air, titik nyala, densitas, viskositas, dan GC-MS. Pengujian GC-MS dilakukan pada yield biodiesel terendah Na2O(0)/LM dan tertinggi Na2O(60)/LM, menghasilkan FAME masing-masing sebesar 99,26% dan 99,99%.


Kata kunci: nanokatalis; Na2O/LM; minyak jelantah; transesterifikasi; biodiesel


ABSTRACT


  This research demonstrates the preparation and characterization of NaOH-impregnated Lapindo Mud nanocatalysts for biodiesel production from waste cooking oil through transesterification. The nanocatalysts were synthesized by wet impregnation of NaOH into Lapindo Mud, calcination at 550°C for 3 hours, and ball milling at 4000 rpm for 1 hour to achieve a nanoscale particle size. Enhanced surface area significantly improves reactant-catalyst interaction, accelerating the catalysis process. Characterization using XRF, XRD, FTIR, and PSA revealed systematic changes in chemical composition and structure with increasing NaOH content. XRF analysis showed decreased SiO2 and increased Fe2O3 levels with higher NaOH percentages, while XRD identified four phases: SiO2, Na2O, Na2SiO3, and Al2SiO5, with Na2SiO3 formed from NaOH-SiO2 reactions. PSA analysis indicated particle size increases from 514.3 nm [Na2O(0)/Lapindo Mud] to 577.7 nm [Na2O(60)/Lapindo Mud] due to aggregation. Transesterification reactions were conducted using waste cooking oil and methanol at a 1:9 ratio with 5 wt% nanocatalyst for 2 hours at 65°C. Catalytic performance demonstrated a strong correlation between NaOH content and biodiesel yield: NaOH(0)/Lapindo Mud (77.36%), NaOH(20)/Lapindo Mud (83.27%), NaOH(40)/Lapindo Mud (86.51%), and NaOH(60)/Lapindo Mud (96.68%). GC-MS analysis confirmed excellent biodiesel quality, with FAME content of 99.26% and 99.99% for the lowest and highest performing catalysts, respectively. Results demonstrate that NaOH-impregnated Lapindo Mud nanocatalysts offer a cost-effective and environmentally sustainable solution for converting waste cooking oil into high-quality biodiesel.


Keywords: nanocatalysts; Na2O/Lapindo Mud; waste cooking oil; transesterification; biodiesel

Downloads

Download data is not yet available.

Author Biography

S. Samik, Universitas Negeri Surabaya

Departement of  Chemistry, Faculty of Mathematics and Natural Sciences,

State University of Surabaya, Surabaya, Indonesia

References

Budiarti, H. A., Puspitasari, R. N., Hatta, A. M., Sekartedjo, & Risanti, D. D. 2017. Synthesis and Characterization of TiO2@SiO2 and SiO2@TiO2 Core-Shell Structure Using Lapindo Mud Extract via Sol-Gel Method. Procedia Engineering. 170: 65–71. https://doi.org/10.1016/j.proeng.2017.03.013
Ciptawati, E., Hilfi Azra Dzikrulloh, M., Oki Septiani, M., Rinata, V., Ainur Rokhim, D., Azfa Fauziyyah, N., & Sribuana, D. 2022. Analisis Kandungan Mineral dari Lumpur Panas Sidoarjo sebagai Potensi Sumber Silika dan Arah Pemanfaatannya. IJCA (Indonesian Journal of Chemical Analysis). 5(1): 18–28. https://doi.org/10.20885/ijca.vol5.iss1.art3
Deli, N. A., & Veronika, N. 2023. Pemurnian Minyak Goreng Bekas Dengan Adsorben Ampas Tebu Untuk Pembuatan Biodisel. Jurnal Sipil Terapan. 1(2): 75–89. https://doi.org/10.58169/jusit.v1i2.273
Dinanti, P., Sundari, S., Laksmono, R., Ramadhan, T. R., & Sianipar, L. 2024. Analisis Biaya Ekonomi Serta Dampak Lingkungan Penggunaan Gasoline dan Biofuel Sebagai Bahan Bakar Transportasi. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam. 5(4): 2027–2040. https://doi.org/10.47467/elmal.v5i4.871
El-sherif, A. A., Hamad, A. M., Shams-Eldin, E., Mohamed, H. A. A. E., Ahmed, A. M., Mohamed, M. A., Abdelaziz, Y. S., Sayed, F. A. Z., El qassem Mahmoud, E. A. A., Abd El-Daim, T. M., & Fahmy, H. M. 2023. Power of recycling waste cooking oil into biodiesel via green CaO-based eggshells/Ag heterogeneous nanocatalyst. Renewable Energy. 202(September 2022): 1412–1423. https://doi.org/10.1016/j.renene.2022.12.041
Hawazin, Azhaar, D. H., Priandoyo, D. S., Pratiwi, R., Juniawan, H. R., & Mirzayanti, Y. W. W. 2024. Review: Penerapan Nanoteknologi Untuk Produksi Biodesel. Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan. 4(0): 1–8. https://ejournal.itats.ac.id/senastitan/article/view/5522
Ibrahim, M. L., Nik Abdul Khalil, N. N. A., Islam, A., Rashid, U., Ibrahim, S. F., Sinar Mashuri, S. I., & Taufiq-Yap, Y. H. 2020. Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Conversion and Management. 205(January). https://doi.org/10.1016/j.enconman.2019.112445
Khoiruummah, D., Sundari, N., Zamhari, M., Yuliati, S., Teknik Kimia Prodi Teknologi Kimia Industri Politeknik Negeri Sriwijaya Jl Srijaya Negara, J., Lama, B., & Ilir Barat, K. I. 2020. Aplikasi Katalis Berbasis Karbon Aktif dari Kayu Akasia (Acacia mangium) Diimpregnasi Basa pada Sinetesis Biodiesel. Politeknik Negeri Sriwijaya. 01(01): 20–28.
Kurniasih, E., Teknik Kimia, J., Negeri Lhokseumawe, P., Banda Aceh-Medan Km, J., kunci, K., & Bakar, B. 2017. Performa Katalis Basa NaOH Dan Zeolite/NaOH Pada Sintesa Biodiesel Sebagai Sumber Energi Alternatif. Seminar Nasional Seminar Nasional Sains Dan Teknologi Fakultas Teknik Universitas Muhammadiyah Jakarta , November. 1–7.
Kurniati, S., S, S., Galla, W., & Nursalim, H. 2020. Pembuatan Biodiesel Dari Minyak Nyamplung (Calophyllum inophyllum L.) Dengan Katalis KOH Menggunakan Gelombang Mikro (Microwave). 12–15.
Mahmudah, N. A. 2023. Pengaruh Penambahan Silika Amorf pada Katalis Hidrodearomatisasi Berbasis NiW untuk Pembuatan Lube Base Oil Group II.
Meilani, B. D., Wahyuni, N., & Shofiyani, A. 2023. Indonesian Journal of Chemical Science Synthesis of Red Mud-Based SiO 2 with Various NaOH Concentration and Extraction Times. Indonesian Journal of Chemical Science. 12(3): 305–316. http://journal.unnes.ac.id/sju/index.php/ijcs
Mulana, F. 2011. Penggunaan Katalis NaOH dalam Proses Transesterifikasi Minyak Kemiri menjadi Biodiesel. Jurnal Rekayasa Kimia Dan Lingkungan. 8(2): 73–78.
Narayan, N., Meiyazhagan, A., & Vajtai, R. 2019. Metal nanoparticles as green catalysts. Materials. 12(21): 1–12. https://doi.org/10.3390/ma12213602
Okechukwu, O. D., Joseph, E., Nonso, U. C., & Kenechi, N.-O. 2022. Improving heterogeneous catalysis for biodiesel production process. Cleaner Chemical Engineering. 3(April), 100038. https://doi.org/10.1016/j.clce.2022.100038
Oko, S., Mustafa, M., Kurniawan, A., & Putri, K. N. E. 2021. Sintesis Biodiesel dari Minyak Jelantah Menggunakan Katalis NaOH/CaO/C dari Cangkang Telur. Jurnal Riset Teknologi Industri. 15(2): 147. https://doi.org/10.26578/jrti.v15i2.6835
Priya, R., Khurana, I., & Prakash, O. 2019. Synthesis of intense red light ‑ emitting β ‑ Ca2 SiO4 : Eu 3 + phosphors for near UV ‑ excited light ‑ emitting diodes utilizing agro ‑ food waste materials. Journal of Materials Science: Materials in Electronics. 0123456789. https://doi.org/10.1007/s10854-019-02710-1
Putra, R. H. S. 2018. Karakteristik Pada Logam Baja Paduan dengan Menggunakan Metoda X-Ray Fluorosence (XRF) dan Optical Emission Spectroscopy (OES). Universitas Negeri Yogyakarta. 134.
Putri, N. S., Rahim, A., Patiung, O., & Afasedanja, M. M. T. 2023. Pengujian X-Ray Fluorescence Terhadap Kandungan Mineral Logam Pada Endapan Sedimen di Sungai Amamapare Kabupaten Mimika, Papua Tengah. Jurnal Teknik AMATA, 4(1): 6–10. https://doi.org/10.55334/jtam.v4i1.104
Ramadani, S., Zulnazri, Z., Bahri, S., Dewi, R., & ZA, N. 2023. Analisa Pengaruh Waktu Dan Furnace Pada Pembentukan Silika Dari Sekam Padi. Chemical Engineering Journal Storage (CEJS. 3(5): 683. https://doi.org/10.29103/cejs.v3i5.12009
Ryu, Y. B., & Lee, M. S. 2018. Infrared Spectra and Thermal Properties of Sodium Silicate Solutions.
Sirait, M., & Bukit, N. 2014. Jurnal Sains Materi Indonesia METODE BALL MILLING. April 2012: 7–11.
Susanti, T., Mas’udah, M., & Santosa, S. 2023. STUDI PENGGUNAAN KATALIS CaO-NaOH PADA PRODUKSI BIODIESEL DARI MINYAK JELANTAH. DISTILAT: Jurnal Teknologi Separasi. 8(2): 294–300. https://doi.org/10.33795/distilat.v8i2.361
Sutanto, C. F., Wiryawan, F. P., & Kurniawansyah, F. 2021. Pra Rancangan Pabrik Biodiesel dari Minyak Jelantah Menggunakan Metode Transesterifikasi dengan Kapasitas 50.000 Ton/Tahun. Jurnal Teknik ITS. 10(2): https://doi.org/10.12962/j23373539.v10i2.70673
Talib, N. B., Triwahyono, S., Jalil, A. A., Mamat, C. R., Salamun, N., Fatah, N. A. A., Sidik, S. M., & Teh, L. P. 2016. Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils. Energy Conversion and Management, 108: 411–421. https://doi.org/10.1016/j.enconman.2015.11.031
Tkachenko, Y., & Niedzielski, P. 2022. FTIR as a Method for Qualitative Assessment of Solid Samples. Molecules.
Trisunaryanti, W., Triyono, T., Fallah, I. I., Salsiah, S., & Alisha, G. D. 2022. Highly Selective Bio-hydrocarbon Production using Sidoarjo Mud Based-Catalysts in the Hydrocracking of Waste Palm Cooking Oil. Bulletin of Chemical Reaction Engineering and Catalysis. 17(4): 712–724. https://doi.org/10.9767/bcrec.17.4.15472.712-724
Xie, W., Xiong, Y., & Wang, H. 2021. Fe3O4-poly(AGE-DVB-GMA) composites immobilized with guanidine as a magnetically recyclable catalyst for enhanced biodiesel production. Renewable Energy. 174: 758–768. https://doi.org/10.1016/j.renene.2021.04.086
Published
2025-07-31
How to Cite
HAPSARI, N. N.; SAMIK, S.. UTILIZATION OF NA2O/LAPINDO MUD NANOCATALYST IN THE TRANSESTERIFICATION REACTION OF USED COOKING OIL INTO BIODIESEL. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 293-305, july 2025. ISSN 2599-2740. Available at: <http://ojs.unud.ac.id/index.php/jchem/article/view/121748>. Date accessed: 11 aug. 2025. doi: https://doi.org/10.24843/JCHEM.2025.v19.i02.p20.
Section
Articles
Warning: array_merge(): Argument #2 is not an array in /var/www/ojs.unud.ac.id_backup/lib/pkp/classes/core/PKPApplication.inc.php on line 578 Warning: Invalid argument supplied for foreach() in /var/www/ojs.unud.ac.id_backup/plugins/generic/recommendByAuthor/RecommendByAuthorPlugin.inc.php on line 114