SINTESIS DAN KARAKTERISASI SENYAWA 1-(2-NAFTIL)-5-FENIL-2,4-PENTADIEN-1-ON DARI 2-ASETILNAFTALEN DENGAN SINAMALDEHIDA
Abstract
Analog kalkon berhasil disintesis menggunakan 2-asetilnaftalen dan sinamaldehida melalui reaksi kondensasi Claisen–Schmidt dengan menggunakan KOH sebagai katalis. Kemurnian produk dikonfirmasi menggunakan kromatografi lapis tipis dan uji titik leleh menggunakan alat melting Point Appartus LD-LDMP-A13. Sintesis tersebut menghasilkan rendemen sebesar 66,9%. Analisis struktur senyawa hasil sintesis dikarakterisasi menggunakan analisis FTIR dan GCMS. Analisis FTIR dan GCMS telah mengidentifikasi bahwa produk yang disintesis adalah senyawa analog kalkon dengan nama 1-(2-naftil)-5-fenil-2,4-pentadien-1-on.
Kata kunci:
Kalkon, 2-asetilnaftalen, sinamaldehid, dan 1-(2-naftil)-5-fenil-2,4-pentadien-1-on
ABSTRACT
Chalcone analogues were successfully synthesized from 2-acetylnaphthalene and cinnamaldehyde by Claisen-Schmidt condensation reaction using KOH as a catalyst. The purity of the compound was confirmed by using thin layer chromatography, and the melting point test was determined by a melting Point apparatus LD-LDMP-A13. The synthesis recovery was 66.9%. The structural analysis of the synthesized compound was characterized using FTIR and GC-MS analysis. The FTIR and GC-MS analysis confirmed that the synthesized product was a chalcone analogue of 1-(2-naphthyl)-5-phenyl-2,4-pentadiene-1-one.
Keywords:
Chalcone, 2-acetylnaphthalene, cinnamaldehyde, and 1-(2-naphthyl)-5-phenyl-2,4-pentadiene-1-one
Downloads
References
https://doi.org/10.3390/molecules29194539
Cahyana, A., Fitria, D., Ardiansyah, B., & Rahayu, D. (2017). Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis. Journal of Physics: Conference Series, 1–5. https://doi.org/https;//doi.org/10.1088/1742-6596/755/1/011001
da Silva, P. T., da Cunha Xavier, J., Freitas, T. S., Oliveira, M. M., Coutinho, H. D. M., Leal, A. L. A. B., Barreto, H. M., Bandeira, P. N., Nogueira, C. E. S., Sena, D. M., Almeida-Neto, F. W. Q., Marinho, E. S., Santos, H. S., & Teixeira, A. M. R. (2021). Synthesis, spectroscopic characterization and antibacterial evaluation by chalcones derived of acetophenone isolated from Croton anisodontus Müll.Arg. Journal of Molecular Structure, 1226.
https://doi.org/10.1016/j.molstruc.2020.129403
Fadhil, H. R., Raauf, A. M. R., & Mahdi, M. F. (2024). Synthesis, characterization, preliminary molecular docking, pharmacological activity, and ADME studies of some new pyrazoline derivatives as anti-breast cancer agents. Pharmacia, 71, 1–10. https://doi.org/10.3897/pharmacia.71.e133015
Fitria, D., Ardiansah, B., & Balkis, A. (2023). Synthesis and Characterization of 1-(1-naphthyl)-5-phenyl-2,4-pentadien-1-one from trans-cinnamaldehyde and 1-acetonaphthone. Al-Kimiya, 10(1), 13–19.
https://doi.org/10.15575/ak.v10i1.22896
Fitria, D., Cahyana, A. H., & Liandi, A. R. (2021). Green Synthesis and Characterization of Cinnamylideneacetophenone Compound Using Fe3O4 Magnetic as Catalyst. EduChemia (Jurnal Kimia Dan Pendidikan), 6(2), 172.
https://doi.org/10.30870/educhemia.v6i2.10412
Jasril, J., Frimayanti, N., & Ikhtiarudin, I. (2020). In silico studies of fluorinated chalcone and pyrazoline analogues as inhibitors for cervical cancer. AIP Conference Proceedings, 2242(April 2021).
https://doi.org/10.1063/5.0009375
Jasril, J., Ikhtiarudin, I., Hasti, S., Reza, A. I., & Frimayanti, N. (2019). Microwave-assisted synthesis, in silico studies and in vivo evaluation for the antidiabetic activity of new brominated pyrazoline analogs. Thai Journal of Pharmaceutical Sciences, 43(2), 83–89.
Jasril, J., Ikhtiarudin, I., Zamri, A., Teruna, H. Y., & Frimayanti, N. (2017). New fluorinated chalcone and pyrazoline analogs: Synthesis, docking, and molecular dynamic studies as anticancer agents. Thai Journal of Pharmaceutical Sciences, 41(3), 93–98.
Jasril, Teruna, H. Y., Aisyah, Nurlaili, & Hendra, R. (2019). Microwave assisted synthesis and evaluation of toxicity and antioxidant activity of pyrazoline derivatives. Indonesian Journal of Chemistry, 19(3), 583–591. https://doi.org/10.22146/ijc.34285
Lamara, K. O., Malika, M.-C., Benazzouz-Touami, A., Terrachet-Bouaziz, S., Robert, A., Machado-Rodrigues, C., & Behr, J.-B. (2021). Journal of Molecular Structure Synthesis, Biological activities of chalcones and novel 4-acetylpyridine oximes, molecular docking of the synthesized products as acetylcholinesterase ligands.
https://www.elsevier.com/open-access/userlicense/1.0/
Mallia, A., & Sloop, J. (2023). Advances in the Synthesis of Heteroaromatic Hybrid Chalcones. In Molecules 28(7). MDPI.
https://doi.org/10.3390/molecules28073201
Ngameni, B., Cedric, K., Mbaveng, A. T., Erdoğan, M., Simo, I., Kuete, V., & Daştan, A. (2021). Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives. Bioorganic and Medicinal Chemistry Letters, 35(January).
https://doi.org/10.1016/j.bmcl.2021.127827
Polaquini, C. R., Torrezan, G. S., Santos, V. R., Nazaré, A. C., Campos, D. L., Almeida, L. A., Silva, I. C., Ferreira, H., Pavan, F. R., Duque, C., & Regasini, L. O. (2017). Antibacterial & antitubercular activities of cinnamylidenea-cetophenones. Molecules, 22(10), 1–12.
https://doi.org/10.3390/molecules22101685
Vasudha, D., Jagadeesh, A., Konidala, S. K., Yasin, H., Mali, S. N., Bhandare, R. R., & Shaik, A. B. (2024). Development of Orally Active Anti-Inflammatory Agents: In Vivo and In Silico Analysis of Naphthalene-Chalcone Derivatives Based on 2-Acetyl-6-Methoxy Naphthalene. Chemical Physics Impact, 8(January), 100472.
https://doi.org/10.1016/j.chphi.2024.100472
Xu, M., Wu, P., Shen, F., Ji, J., & Rakesh, K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. Bioorganic Chemistry, 91(July), 103133. https://doi.org/10.1016/j.bioorg.2019.103133
This work is licensed under a Creative Commons Attribution 4.0 International License